
Algorithmica (2022) 84:742–756
https://doi.org/10.1007/s00453-021-00883-y

Computing The Maximum Exponent in a Stream

Oleg Merkurev1 · Arseny M. Shur1

Received: 3 September 2020 / Accepted: 11 October 2021 / Published online: 3 November 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
We consider the streaming version of the following problem: given an input string
s of length n, find the maximum exponent of a substring of s. We prove that any
algorithm deciding, w.h.p., whether a string contains a square, uses memory of size
Ω(n), and thus does not satisfy the limitations of the streaming model. Thus the
considered problem has no exact solution in the streaming model. Our main result is
a Monte Carlo algorithm which computes the maximum exponent up to an additive
error ε < 1/2: it outputs a number α such that s has a substring of exponent α but no

substrings of exponent α+ε or higher. The algorithm usesO(
log2 n

ε
)words of memory

and performsO(log n) operations, including dictionary operations, per input symbol.

Keywords Stringology · Streaming algorithm · Periodic string · Exponent · Gapped
repeat

Mathematics Subject Classification 68W32 · 68W27 · 68R15

1 Introduction

The exponent of a string, which is the ratio between its length and its minimum period,
is a natural measure of global periodicity. At the same time, the maximum exponent
of a substring, also known as local or critical exponent of a string, measures local
periodicity. The study of exponents and local exponents of strings can be traced back
to the seminal papers by Thue [19,20]. Here we focus on the algorithmic aspects.
In the usual RAM model, the exponent of a string can be easily computed online in
linear time; for example, the pattern preprocessing in the Knuth–Morris–Pratt string
matching algorithm [11] gives the exponent of the pattern for free. Note that this

B Arseny M. Shur
arseny.shur@urfu.ru

Oleg Merkurev
o.merkuryev@gmail.com

1 Ural Federal University, Ekaterinburg, Russia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00883-y&domain=pdf

Algorithmica (2022) 84:742–756 743

result holds for any alphabet. For local exponents, the things are more complicated.
The “easy” case occurs when a string contains periodic substrings (a string is periodic
if its minimal period is at least twice smaller than its length). Assuming polynomial
integer alphabet (which is a common assumption in stringology), all maximal periodic
substrings, or runs, can be found in linear time [13]. Over a general alphabet, the
asymptotically best known algorithm, proposed in [6], finds all runs in timeO(n·α(n)),
where α is the inverse Ackermann function. In the opposite case, where the string
contains no periodic substrings, only the case of a constant-size alphabet was analyzed.
Here a linear-time algorithm was designed in [3]. This algorithm makes an explicit
use of the lower bound on the local exponents of long strings (“repetition threshold”),
which depends on the alphabet. We did not find any results for more general alphabets.
A related problem of reporting all maximal substrings with exponents greater than
a given threshold was considered, also over a constant-size alphabet, in [7,12]. The
solution in optimalO(n/ε) time for the threshold (1+ε)was presented in [7], together
with a detailed survey of related results.

Weconsider the problemof computing the local exponent of a stream.The streaming
model of computation became quite popular in stringology in the last decade, after
impressive results on streaming string matching [5,16]. In the streaming model, the
input string arrives online symbol by symbol; after reading a symbol, the algorithm
must compute the answer for the string it has read. The main restriction is that the
string cannot be stored after reading, because the available amount of memory is
sublinear. This restriction is quite severe, and so most of the streaming algorithms are
approximate, randomized, or both. Often, onlyMonte Carlo approximation algorithms
can reach sublinear memory. This is the case for the computation of the local exponent
as well as for other closely related problems: finding a longest repeated substring [14]
and computing all runs [15]. The latter problem is closely related to finding the local
exponent: it covers the case where the stream contains runs that can be detected by a
streaming algorithm.

Our results are as follows. First we show that no streaming algorithm, even aMonte
Carlo one, can compute the exact local exponent of a stream. More precisely, we show
that it is impossible to correctly compare, using a sublinear amount of memory, the
local exponent of a string with 2. Next we formulate the problem of approximating
the local exponent with an additive error and then present the main result, which is
the following theorem.

Theorem 1 There exists a Monte Carlo streaming algorithm which

• given a length-n input stream s over a polynomial integer alphabet and an error
parameter ε ∈ (0; 1

2], returns the number α such that s has a substring of exponent
α but no substrings of exponent α + ε or higher;

• uses O(
log2 n

ε
) words of memory and performs O(log n) operations, including

dictionary operations, per input symbol.

To prove Theorem 1, both the results and the technique of [15] are heavily used.

123

744 Algorithmica (2022) 84:742–756

2 Preliminaries

Let s denote a string of length n over an alphabet Σ = {1, . . . , σ }, where σ is
polynomial in n. We write s[i] for the i th symbol of s and s[i .. j] for its substring
(or factor) s[i]s[i+1] · · · s[j]. Thus, s[1..n] = s. By convention, s[i .. j] is an empty
string if j < i . A prefix (resp. suffix) of s is a substring of the form s[1.. j] (resp.,
s[j ..n]). If w = s[i .. j], we say that w occurs (or has an occurrence) in s at position i .
A period of s is a positive integer p such that s[1..n−p] = s[p+1..n]; per(s) denotes
the minimum period of s. We often refer to the strings having period p as p-periodic.
The exponent of s is the ratio exp(s) = |s|/per(s), where |s| denotes the length of s.
The number lexp(s) = max{exp(s[i .. j]) | 1 ≤ i < j ≤ n} is the local (or critical)
exponent of s.

A repetition of period p is a string s such that p = per(s) ≤ |s|/2. Thus, s is a rep-
etition iff exp(s) ≥ 2; repetitions of exponent 2 are called squares. A string containing
no repetitions (or, equivalently, no squares) is called square-free. A repetition s[i .. j]
of period p is called a run (in s) if both s[i−1.. j] and s[i .. j+1], whenever exist, have
no period p. Following [7], we use the term subrepetition for any string s satisfying
1 < exp(s) < 2. Such a string can be factorized as s = uvu, where |uv| = per(s); u
is its border.

Wework in the streamingmodel of computation: the input string s[1..n] (the stream)
is read from left to right, one symbol at a time, and cannot be stored, because the
available space is sublinear in n. The space is counted as the number of O(log n)-bit
machine words (in this paper, log stands for the binary logarithm).

A Monte Carlo algorithm gives a correct answer with high probability (at least
1 − 1

n on a length n input) and has deterministic working time and space. For the
related streaming problems of finding a longest repeat and computing all runs [14,15],
Monte Carlo approximation algorithms were used, and proofs that other types of
algorithms cannot work in the streaming model were presented. The present paper
follows the same pattern.

The main result of [15] is heavily related to the computation of local exponents, so
we give its precise formulation. Let approxRuns denote the following approximate
version of the problem of computing all runs in a stream:

• given an input string s and an error parameter ε = ε(n) ∈ (0, 1
2], report a set of

substrings of s such that

(i) for each run of exponent α ≥ 2+ε in s a single substring of this run is reported,
having the same period as the run itself and the exponent at least α − ε;

(ii) for runs of smaller exponent, zero or one substring of each run is reported; if
a substring is reported, it has the same period as the run and the exponent at
least 2.

In the algorithm which solved approxRuns we extended the set of elementary oper-
ations with dictionary operations (insert, delete, lookup). The optimal choice of
dictionary depends on ε. The following theorem is the main result of [15].

Theorem 2 There is a Monte Carlo streaming algorithm that solves approxRuns per-

forming O(log n) operations per read and using O(
log2 n

ε
) words of memory.

123

Algorithmica (2022) 84:742–756 745

The algorithm from Theorem 2 can be used to approximate lexp(s) whenever
lexp(s) ≥ 2 + ε (and sometimes this algorithm will be lucky to approximate lexp(s)
in the case 2 ≤ lexp(s) < 2 + ε). The details are given in Sect. 4.

3 The Square-Freeness Problem

As it is known since Thue [19], there exist arbitrarily long square-free strings over
three or more letters. Let SqFree(Σ, n) be the following decision problem:

– given a length-n stream over the alphabet Σ of size σ > 3, decide whether the
stream is square-free.

The following theorem shows that sublinear memory is insufficient to solve this prob-
lem with high probability.

Theorem 3 There is a constant γ such that every algorithm solving the problem
SqFree(Σ, n) with probability at least 1 − 1

n uses at least γ n log σ bits of memory.

Proof The scheme of proof is rather standard for this sort of results. We first use
Yao’s minimax principle [21] and then finalize the intermediary result exploiting the
so-called amplification trick.
Step 1. Assume that some Monte Carlo streaming algorithm solves SqFree(Σ, n)

exactly using less than �log F� bits of memory, where F is the number of square-free
strings of length n′ = n

2 − 1 over σ − 1 letters. Let us prove that its error probability
is at least 1

nσ
. According to Yao’s minimax principle, it is sufficient to construct a

probability distribution Q over Σn such that for any deterministic algorithm D using
less than �log F� bits of memory, the expected probability of error on a string chosen
according to Q is at least 1

nσ
.

We define a length-n string w(x, k, c) as follows. We fix $ ∈ Σ and let Σ1 =
Σ −{$}. Next we fix two arbitrary square-free strings u1 and u2 of length n′ over Σ1;
the only restriction is that their first letters are distinct. Let x be a square-free string
of length n′ over Σ1, c ∈ Σ1, and k ∈ {1, . . . , n′}. Then

w(x, k, c) = x[1..n′] $c x[n′−k+2..n′] $ ui [1..n′−k],

where i = 1 if u1[1] �= c and i = 2 otherwise. Due to the separators $, the string
w(x, k, c) contains a unique square (x[n′−k+1..n′] $)2 if c = x[n′−k+1]; in the case
c �= x[n′−k+1], w(x, k, c) is square free iff cx[n′−k+2..n′] is square free. LetQ be
the uniform distribution over all strings w(x, k, c).

Since the available memory is insufficient to distinguish between any two square-
free strings from Σn′

1 , there exists an “indistinguishable” pair (x, x ′) of such strings;
that is, D is in the same state after reading either x or x ′. Let x = vcs, x ′ = v′c′s,
where v, v′, s ∈ Σ∗

1 , c, c
′ ∈ Σ1, and c �= c′. Then D returns the same answer

on w(x, |s|+1, c) and w(x ′, |s|+1, c), because the right halves of these two strings
coincide. However, w(x, |s|+1, c) contains the square (cs$)2, while w(x ′, |s|+1, c)
is square free. Therefore, D errs on one of the analysed inputs; similarly, it errs on
either w(x, |s|+1, c′) or w(x ′, |s|+1, c′).

123

746 Algorithmica (2022) 84:742–756

Consider an arbitrary maximal set of disjoint pairs (x, x ′) of square-free strings
from Σn′

1 , where the strings in each pair are indistinguishable by D. The memory of
D has no more than 2�log F�−1 ≤ F/2 states. Since at most one string per state is
left unpaired, the number of pairs is at least F/4. As was shown above, each pair
causes two errors by D, to the total of at least F/2 errors. The number of strings in the
distributionQ is F · n′ · (σ − 1), which implies that the probability of error is greater
than 1

nσ
.

Step 2. To use amplification, we relate the parameter F to n and σ . Namely, we show
that there exists a positive constant δ such that �log F� ≥ δn log σ . Let Ck(n) be
the number of k-ary square-free strings of length n. Then Ck(n) is an exponentially-
growing function of n [4]. As was shown in [17], the base αk of this exponential
function satisfies, as a functionof k, the conditionαk = (k−1)−1/(k−1)−1/(k−1)3+
O(1/k5). By definition of F we have F = Cσ−1(n′); so we can write F > d(σ −
3)n/2−1 for some positive constant d and thus log F > (n2 − 1) log(σ − 3) + log d.
If σ ≥ 5, this inequality implies the announced lower bound. For the remaining case
σ = 4 we use a more precise bound α3 > 1.3; see [18, Theorem 4] for the method of
obtaining lower bounds and [18, Table A.2] for numerical results. Hence in this case
F > d ′·1.3n/2−1 for some positive constant d ′, and then log F > (n2 − 1) log 1.3 +
log d ′ = Ω(n) = Ω(n log σ). Thus we proved the existence of a positive δ such that
�log F� ≥ δn log σ .

Now assume that some Monte Carlo streaming algorithm A solves SqFree exactly
with error probability ε ≤ 1

n using s(n) bits of memory. Then we can run its k
instances simultaneously and return the most frequent answer. The new algorithm Ak

uses O(k · s(n)) bits of memory and its error probability εk satisfies the inequality
εk ≤ ∑

2i<k

(k
i

)
(1 − ε)iεk−i ≤ 2k · εk/2 = (4ε)k/2. Recall that σ = O(n p) for some

constant p. Let k = 2p + 3 and take any positive γ ≤ δ
k . If s(n) < γ n log σ , then

algorithm Ak uses less than δn log σ ≤ �log F� bits of memory. On the other hand,
the error probability of Ak is εk ≤ (4ε)k/2 ≤ (4n)p+3/2, which is less than 1

nσ
for n

big enough because σ = O(n p). From step 1 we know that this is impossible, so the
theorem holds for the chosen value of γ .
�

Theorem 3 shows that there is no hope to compute local exponents of streams
exactly, because we cannot even correctly compare this exponent to 2 without an
access to linear-size memory. Hence we come up with a natural approximation version
approxExp of this problem:

• given a stream s and an error parameter ε ∈ (0, 1
2], find a number α such that

α ≤ lexp(s) < α + ε.

The rest of the paper describes the algorithm solving approxExp within the resource
limitations listed in Theorem 1. In fact, the algorithm does more: it is able to output a
position of a substring of exponent α.

4 Tools

The algorithm solving approxRuns (Theorem 2) outputs substrings of s as triples
(l, p, r) such that s[l..r] is a repetition of period p, so it can keep track of themaximum

123

Algorithmica (2022) 84:742–756 747

exponent among these triples without spending additional time or space. This version,
returning the maximum exponent found, is below referred to as Algorithm Rep. Note
that if Algorithm Rep finds at least one repetition, then it solves approxExp and, by
Theorem 2, satisfies the conditions of Theorem 1. So the problem is how to process
the streams in which Algorithm Rep finds nothing.

Weexplore anobvious idea: design an approximation algorithm (AlgorithmSub) for
square-free or “nearly square-free” streams and run it in parallel with Algorithm Rep.
Both algorithms update the current maximum exponent. If a repetition is detected,
we abort Algorithm Sub and continue running Algorithm Rep. In the description
of Algorithm Sub we thus assume that no repetition was detected until the current
iteration.

We make use of particular data structures and general organization of data intro-
duced in [15] for Algorithm Rep. All necessary details are reproduced in this section.

4.1 Fingerprints, Frames, Checkpoints

WeuseKarp–Rabin fingerprints [10], which is a hash function ubiquitous in streaming
string algorithms. Let p be a fixed prime from the range [n4, n5], and r be a fixed
integer randomly chosen from {1, . . . , p−1}. For a string s, its hash is defined as
φ(s) = (∑n

i=1 s[i]·r i
)
mod p. The probability of hash collision for two strings of

length m is at most m/p. Our algorithm compares hashes of strings having equal
lengths of the form 2 j . The probability that a pair of such strings collide is less than
n3/p and thus less than the allowed error probability for Monte Carlo algorithms.
Hence all further considerations assume that no collisions happen. For a string s, its
frame is the tuple (|s|, φ(s), r |s| mod p, r−|s| mod p). The crucial property of frames
is the following.

Lemma 1 ([5]) If the frames of any two of the strings A, B, AB are known, the frame
of the third string can be computed in O(1) time.

All definitions below refer to the input stream s. For any i , the i th iteration of
a streaming algorithm processing s begins with reading s[i] and ends just before
reading s[i+1]. We write I (i) for the frame of s[1..i−1]. Lemma 1 implies that one
can compute I (i+1) in O(1) time from I (i) and s[i].

All information currently stored by our algorithm is associated with checkpoints,
which form a subset of all positions. Each position k becomes a checkpoint at the kth
iteration and “lives” during ttl(k) iterations, where the time-to-live function is defined
by ttl(k) = 2tε+2+β(k) with tε = ⌈

log 2
ε

⌉
and β(k) being the maximum power of 2

dividing k. If k + ttl(k) = i , then at the start of the i th iteration k “dies” (loses the
status of checkpoint) and all associated information is deleted. See the example in
Fig. 1.

Lemma 2 ([15])

1) The number of checkpoints at i’th iteration is O(
log i
ε

).
2) If i − ttl(i) > 0, then the checkpoint i − ttl(i) dies at the i’th iteration. Otherwise,

no checkpoint dies at this iteration.

123

748 Algorithmica (2022) 84:742–756

888480767268646056524844403224168
86827874

90 1051

Fig. 1 The checkpoints (black) after the iteration i = 105 (tε = 2). For example, ttl(52) = 22+2+2 = 64,
so the position 52 is a checkpoint until the iteration 116

Remark 1 We should say a fewwords about the functions β(k) and �log k, both exten-
sively used in our algorithm. Note that �log k = msb(k − 1) + 1, where the function
msb(x) returns the position of the most significant 1 in the binary representation of x .
With the aid of fusion trees,msb(x) can be computed in constant number of operations
withmachinewords; see [9]. A practical way to compute �log k is to subtract the value
clz(k) from the size of the machine word. The clz(x) function counts leading zeroes in
the binary representation of an unsigned integer x in a machine word and is a standard
CPU instruction. Further, β(k) = ctz(k), where the function ctz(k) counts trailing
zeroes in the binary representation of k. Some CPU architectures contain ctz(k) as
an instruction, but we can operate without it: it was shown in [15, Lemma10] that all
calls to β() during one iteration can be performed in O(log n) total time; this bound
fits into Theorem 1.

4.2 Blocks, Groups, Navigation

Both Algorithm Rep and Algorithm Sub work with substrings of length 2 j , j =
0, . . . , �log n�. The notions introduced below are illustrated by Fig. 2. For each itera-
tion i and each j we distinguish a subclass of substrings of length 2 j called j-blocks.
A substring u of length 2 j of the stream s is a j-block (at the i th iteration) if it occurs
in s[1..i] at some checkpoint; i.e., if u = s[k..k+2 j−1] where k is a checkpoint at the
i th iteration. Note that u will lose the status of j-block at some future iteration if no
checkpoints corresponding to the occurrences of u will remain alive. Below we say
“checkpoint occurrence” instead of “occurrence at a checkpoint”. For each j-block T
we maintain a basic structure BT called group and consisting of

• Frame of T
• Doubly-connected list list of all checkpoints, in increasing order, that are positions
of occurrences of T

• Position fresh (described below) and its frame fframe = I (fresh)
• Number ext (described below)

Apart from the checkpoint occurrences of j-blocks, we are interested in their fresh
occurrences (whether at checkpoints or not). An occurrence at position k is fresh at
i th iteration, if k > i − 2 j+1 + 1. This condition means that a fresh occurrence of a
j-block was a suffix of the stream less than 2 j iterations below. So we immediately
have

Observation 1 Any two fresh occurrences of the same j-block overlap.

Bydefinitions of periods and repetitions, overlapping occurrences of the same string
create a repetition. Hence Observation 1 implies

123

Algorithmica (2022) 84:742–756 749

Fig. 2 Illustrating j-blocks and groups. Black positions are checkpoints; the arcs 1, 2, 3, 4 represent all
occurrences of some substring T of length 2 j in the stream at the i th iteration. The occurrences 1 and 3
are at checkpoints (so T is a j-block), while the occurrences 2 and 4 are not. The group BT contains the
information about the occurrences 1, 3, and 4: the positions of 1 and 3 are in BT .list, the position of 4
is BT .fresh. The occurrence 2 is “forgotten”: no information is stored about it. Finally, the arcs 5 and 6
represent equal substrings of length BT .ext

Observation 2 If the suffix of length 2 j of the current stream s[1..i] is a j-block
which already has a fresh occurrence at position f , then s[f ..i] is a repetition. Since
s[f .. f +2 j−1] = s[i−2 j+1..i], this repetition has the period i − f + 1 − 2 j by
definition. Then exp(s[f ..i]) = i− f +1

i− f +1−2 j .

Observation 3 Algorithm Rep needs to memorize, in some compressed form, all fresh
occurrences of each j-block. For Algorithm Sub, we simplified the structure of a group
and store just one fresh occurrence. If a second fresh occurrence is detected, we use
Observation 2, update the answer with the exponent α > 2 of the repetition found, and
stop the algorithm. The rest of the stream is then processed solely by Algorithm Rep.

Finally, the extension number ext is used to memorize an additional information
about the subrepetition uvu, where the right u is the fresh occurrence of a j-block
and the left u is the previous checkpoint occurrence of the same block (depending on
whether the fresh occurrence is at a checkpoint or not, the left u is either last or second
last element of list). The number ext shows that the subrepetition uvu can be extended
in s by ext symbols to the left, preserving the period.

Remark 2 A group is a constant-size structure (two frames, links to the beginning and
the end of list, the numbers fresh and ext) plus a set of constant-size nodes (position,
links to next and previous elements of the list). We store all groups in an array of
constant-size cells endowed with a stack of empty cells. This way, creating a new
group/node and deleting an existing group/node requires O(1) time. The size of the
array is proportional to the number of groups plus the number of occurrences of j-

blocks; both numbers are O(
log2 n

ε
), as follows from Lemma 2(1).

For navigation we use five dictionaries described in the following table. The values
in the first four dictionaries are stored as links.

Id Key Value

H1 j , hash F group of the j-block with hash F
H2 j , checkpoint k group of the j-block occurring at k
H3 j , position k group of the j-block having the fresh occurrence at k
HH j , checkpoint k node for k in the group of the j-block occurring at k
HC checkpoint k frame I (k)

123

750 Algorithmica (2022) 84:742–756

5 Algorithm Sub

Let w = s[t ..i] be a substring, p = per(w). Let f be the smallest position satisfying
f ≥ t and ttl(f) ≥ 2p, and let g be the largest position such that g ≤ i and
ttl(g − p + 1) ≥ 2p. We call the substring s[f ..g] of w the core of w.

Lemma 3 Every substring s[t ..i] with exp(s[t ..i]) ≥ 1 + ε has a nonempty core. The
exponent of the core is greater than exp(s[t ..i]) − ε.

Proof Let ttl(x) ≥ 2p be the minimum time-to-live satisfying this inequality.
Then ttl(x) = 2�log p+1, so β(x) = �log p − 1 − tε by the definition of ttl.
Hence the distance between two consecutive positions with ttl ≥ 2p is 2β(x) <

2(log p+1)−1−log 2
ε = εp

2 . Therefore, the numbers f and g from the definition of the
core satisfy f − t, i − g <

εp
2 . Since |s[t ..i]| ≥ (1 + ε)p, the length of s[f ..g]

is strictly greater than p. So s[f ..g] has period p as a substring of s[t ..i], and
exp(s[f ..g]) > exp(s[t ..i]) − εp

p = exp(s[t ..i]) − ε, as required.
�
Lemma 3 shows that the core of a substring approximates its exponent with the

desired precision. The idea of Algorithm Sub is to detect cores using the information
about j-blocks, stored in groups. The detection becomes possible because the defini-
tion of a core implies that certain positions are checkpoints at the moment when the
core is read (see Fig. 3). When a core is detected, its exponent is computed and used
to update the answer. Some cores can be missed by the algorithm; the crucial fact,
proved in Lemma 4 below, is that a core is missed only if some other substring of
bigger exponent was detected before. This fact ensures the correctness of the answer
found by Algorithm Sub.

One iteration of Algorithm Sub is presented below as Algorithm 1. As was already
said, Algorithm Sub works in parallel with Algorithm Rep, which is responsible for
“big” exponents. Moreover, the two algorithms share the auxiliary stages at each
iteration, with some details simplified for Algorithm Sub. In line 1, we read a new
symbol, compute the frame of the whole string and store it in the dictionaryHC. Then
three nontrivial stages follow. These stages are described in [15] as Algorithms 1–3,
endowed with the proofs of correctness and time bounds. So here we just recall the
performed operations in brief.
Stage 1 (line 2). Lemma 2 indicates the only checkpoint which can die at the current
iteration. We process each of O(log n) j-blocks at the checkpoint position, deleting
the checkpoints from their groups and from dictionaries; groups without checkpoints
are also deleted. The dictionaries H2 and HH are used, an entry in HC is deleted.
Stage 2 (line 3). The j-blocks of the form s[k..i],where k is a checkpoint, are processed.
For each block we compute its hash, retrieving I (k) from the dictionaryHC and using
Lemma 1. Then we extract the group B of this block from the table H1; if B does not
exist, it is created. A node for k is added to B.list, and an element is added to HH.
The occurrence at k is fresh, so B.fresh is set to k, B.fframe is set to I (k), and a new
element is added to the dictionary H3. If a fresh occurrence existed before, a repetition
is detected, which implies the abortion of the algorithm; the rest of the stream will be
processed solely by Algorithm Rep. The stage includes one more loop over j : using
H2, the expired fresh checkpoint occurrences are deleted.

123

Algorithmica (2022) 84:742–756 751

Algorithm 1 (Algorithm Sub, i th iteration)
1: read s[i]; compute I (i + 1) from I (i) and s[i]; add I (i + 1) to HC
2: if i − ttl(i) > 0 then delete the checkpoint i − ttl(i) � [15] Algorithm 1

3: update groups � [15] Algorithm 2
4: for { j ← 0; k = i − 2 j + 1 && k ≥ 1; j++} do
5: find the group B of the suffix T = s[k..i] � [15] Algorithm 3
6: if B = null then � T has no checkpoint occurrences
7: continue
8: if B.fresh < k then � two fresh occurrences: a repetition

9: update answer with 1 + 2 j
k−B.fresh ; stop

10: if B.fresh = k then � k is a checkpoint, added to B in line 2
11: f ← B.list .top.next � rightmost non-fresh checkpoint occurrence of T

12: if B.fresh = null then
13: f ← B.list .top � rightmost checkpoint occurrence of T
14: B.fresh ← k; B.fframe ← I (k) � setting the position of fresh occurrence of T

15: p ← k − f ; j ′ ← max{0, �log p − 1 − tε}
16: B.ext = 0
17: B′ ← H2(j, f − 2 j

′
)

18: if B′.fresh = k − 2 j
′
then

19: B.ext ← 2 j
′
; b1 ← B′.list .top; b2 ← B′.list .top.next

20: if b1 = f − 2 j
′
or (b1 = k − 2 j

′
and b2 = f − 2 j

′
)) then

21: B.ext ← B.ext + B′.ext
22: update answer with 1 + 2 j+B.ext

p � p-periodic subrepetition s[f −B.ext ..i] is found

Stage 3 (line 5). A trick is used here to find the hash of the suffix T = s[k..i] of length
2 j in the case if k is not a checkpoint. If T has no checkpoint occurrences, it is useless
in the search of (sub)repetitions, and we skip it. But if T has such an occurrence, then
its prefix of length 2 j−1 is a (j−1)-block occurring at the same checkpoint. We check
at H3 whether there is a (j−1)-block T ′ with the fresh occurrence at k. If yes, we
extract the frame I (k) as fframe of T ′ and get the hash of T by Lemma 1. The fresh
occurrence of T ′ at k is then deleted as expired (it was not deleted at Stage 2 because
k is not a checkpoint). After computing the hash of T , the group of T is retrieved from
the dictionary H1. If no such group exists (T ′ has checkpoint occurrences but T has
not), we skip T (lines 6–7).

In lines 8–9, the algorithm stops according toObservation 3 if two fresh occurrences
of T (at B.fresh and at k) are found. Lines 10–22 are related to the main procedure:
core detection.

Lemma 4 Suppose that Algorithm Sub processed a stream s and no repetitions were
detected. Let s[t ..i] be a substring of s such that exp(s[t ..i]) ≥ 1+ε, p = per(s[t ..i])
and s[t−1..i] is not p-periodic. Then Algorithm Sub detected either the core of s[t ..i]
or some other substring of exponent greater than the exponent of this core.

Proof Let s[f ..g] be the core of s[t ..i] (see Fig. 3 for an illustration). Since it has
period p, s[f ..g−p] = s[f +p..g] by definition. Let us denote this repeated part by
u. One has |u| = g − f − p + 1. Let j = �log |u|�. Then u is strictly shorter than a
(j+1)-block and (non-strictly) longer than a j-block.We prove the lemma by showing
that Algorithm Sub followed one of two scenarios:

123

752 Algorithmica (2022) 84:742–756

Fig. 3 Finding the core s[f ..g] of a p-periodic substring s[t ..i] (Lemma 4). Black positions are checkpoints,
white positions can have any status. In the picture, j = j ′ + 2 and k = 6

Fig. 4 Illustrating the proof of Lemma 4: an additional occurrence of T0 at position f ′

(i) The core was detected at the gth iteration: for the j-block which is the suffix of
s[1..g] (T2 in Fig. 3) the previous occurrence at a checkpoint was at distance p
and ext = |u| − 2 j ; these two conditions imply s[f ..g−p] = s[f +p..g];

(ii) A substring of exponent bigger than the exponent of the core was detected no later
than at the gth iteration.

Let j ′ = max{0, �log p − 1 − tε}. As shown in the proof of Lemma 3, consecutive
positions with ttl ≥ 2p are at distance 2 j ′ . Since f and g − p + 1 have ttl ≥ 2p by
the definition of a core, (g − p + 1) − f = |u| = h · 2 j ′ for some h ≥ 1. Hence
each of the positions f , f + 2 j ′ , . . . , f + (h−1) · 2 j remains a checkpoint for at least
2�log p+1 iterations and u = s[f ..g−p] is a concatenation of h j ′-blocks at these
checkpoints. These j ′-blocks can be combined into overlapping j-blocks, denoted by
T0, T1, . . . , Td as in Fig. 3. Note that d = h − 2 j− j ′ ; in particular, if h is a power of
2, then s[f ..g−p] is a single j-block.

Now we are going to show that Algorithm Sub followed either scenario (i) or
scenario (ii) with respect to the core s[f ..g]. To do this, we analyze the iterations
i0, . . . , id in which the right (in Fig. 3) occurrences of the j-blocks T0, T1, . . . , Td
were suffixes of the stream; that is ir = f + p + 2 j + r2 j ′ − 1 for r = 0, . . . , d
(thus id = g). First consider the iteration i0. At this iteration, f was a checkpoint
and the stream had the j-block T0 at position f +p as a suffix. Hence, Algorithm Sub
found, in line 11 or line 13, the rightmost previous checkpoint occurrence of T0. The
checkpoint is either f or some f ′ > f . In the latter case, consider the three occurrences
of T0: at f , f ′, and f +p (Fig. 4). These occurrences neither overlap nor touch:
otherwise, T0 had two fresh occurrences at somemoment and a repetitionwas detected,
which is impossible by the conditions of the lemma. Thus these occurrences form two
subrepetitions s[f .. f ′+2 j−1] and s[f ′..i0] overlapping by the middle occurrence.
One of these subrepetitions was detected at the iteration i0 and the other one had been
found earlier at the iteration f ′ + 2 j − 1. The sum of their periods is p. Then one of
the periods is at most p/2, and the exponent of the corresponding substring is at least

1+ 2 j+1

p . By definition of j , 2 j+1 > |u|, so this exponent is greater than the exponent
of the core, which is 1 + |u|

p . Therefore, scenario (ii) was realized.
Now consider the case where the rightmost previous checkpoint occurrence of T0 is

at f . The two rightmost occurrences of T0 do not overlap or touch because no repetition
was detected. Then, in particular, 2 j < p (see Fig. 3). The algorithm computed f ,

123

Algorithmica (2022) 84:742–756 753

p, and j ′ in line 15 and set the extension of T0 to 0 in line 16. Next, in line 17 the
algorithm retrieved the j-block at position f − 2 j ′ . This position was a checkpoint at
the considered iteration. Indeed, ttl(f − 2 j ′) ≥ 2p (as mentioned above, consecutive
positions with ttl ≥ 2p are at distance 2 j ′). Then ttl(f −2 j ′) ≥ 2 j+2 because 2 j < p.
It remains to note that 2 j+2 is greater than the difference between the current position
i0 = f + p + 2 j − 1 and f − 2 j ′ . The retrieved j-block differs from the j-block
at the position f + p − 2 j ′ because f − 2 j ′ < t by the definition of a core and
s[t − 1] �= s[t + p − 1] be the conditions of the lemma. Hence the condition in line
18 is false (note that k = p + f); so the algorithm detected the subrepetition s[f ..i0]
and updated the answer with its exponent1 + 2 j

p in line 22.
Next consider the iteration i1, in which the stream had the suffix T1. At this iteration,

the algorithm found the previous checkpoint occurrence of T1. If the checkpoint is
greater than f + 2 j ′ , then we repeat the above argument about three occurrences of
T0 for the occurrences of T1 and conclude that scenario (ii) took place. Assume that
the occurrence was found at f + 2 j ′ . In line 17, the j-block at the checkpoint f was
retrieved; this block is T0 and its fresh occurrence satisfies the condition in line 18.
The extension of T1 is set in line 19 to 2 j . The value B ′.ext had been set to 0 during the
iteration i0 we considered above; thus the iteration i1 ended by updating the answer

in line 22 with the exponent 1 + 2 j+2 j ′
p of the subrepetition s[f ..i1].

Finally we prove by induction the following claim: for any r ≤ d either scenario
(ii) was detected no later than at the iteration ir or the iteration ir ended by updating

the answer with the exponent 1+ 2 j+r2 j ′
p of the subrepetition s[f ..ir]. The base case

is proved above; we proceed with the step case.
Consider the iteration ir for some r ≥ 2 and suppose that scenario (ii) was not

detected till its end. At the iteration ir , the algorithm found the previous checkpoint
occurrence of Tr . If this checkpoint is greater than f + r ·2 j ′ , scenario (ii) is detected
repeating the above argument for T0 (Fig. 4). Since we assumed it was not detected,
the previous checkpoint occurrence of Tr was at f + r ·2 j ′ . By the same argument, the
previous checkpoint occurrence of Tr−1, found at the iteration ir−1, was at f + (r −
1)2 j ′ . Further, the iteration ir−1 ended with updating the answer with the exponent

1 + 2 j+(r−1)2 j ′
p of the string s[f ..ir−1] by the inductive hypothesis. This means (see

line 22) that the extension of the block Tr−1 was set to (r − 1)2 j ′ .
Consider the rest of the iteration ir after the checkpoint f + r ·2 j ′ was found. In

line 17, the block Tr−1 was retrieved. The condition in line 18 is true: it refers to the
occurrence of Tr−1 we analysed at the iteration ir−1. In addition, the condition in line
20 holds: it says that when the algorithm processed the suffix Tr−1 at that iteration,
it found the checkpoint occurrence at f + (r − 1)2 j ′ . Hence the algorithm set the
extension of Tr to 2 j ′ at line 19 and updated it to 2 j ′ + (r − 1)2 j ′ = r ·2 j ′ in line 21.

Then in line 22 the answer is updated with the required exponent 1 + 2 j+r2 j ′
p . The

claim is proved.
For r = d, the claim says that if scenario (ii) was not detected, then at gth iteration

the answer was updated with the exponent 1 + 2 j+d2 j ′
p . As 2 j + d2 j ′ = h2 j ′ = |u|,

this is exactly the exponent of the core s[f ..g]. This means that scenario (i) took place.
The lemma is proved.
�

123

754 Algorithmica (2022) 84:742–756

Fig. 5 Illustrating special case ofAlgorithm1: the extensions of the j-blocks T and T ′ refer to subrepetitions
with different periods. At the i th iteration, the condition in line 20 fails, preventing the algorithm from adding
the extension of T ′ to the extension of T

Remark 3 The condition in line 20 prevents Algorithm Sub from an error in a tricky
situation illustrated by Fig. 5. At the current iteration i , for a suffix T of length 2 j

the rightmost checkpoint occurrence was found at position f . The period p and the
number j ′ were computed, the j-block T ′ at the position f − 2 j ′ was retrieved, and
this block appeared to have a fresh occurrence at k − 2 j ′ . Then the extension of T is
set to 2 j ′ (the subrepetition s[f −2 j ′ ..i] is p-periodic). However, it would be an error
to further increase the extension of T by the extension of T ′, because they are related
to different subrepetitions: the extension of T ′ reflects the equality of two substrings
Z shown in the picture. The condition in line 20 fails (if k − 2 j ′ is a checkpoint, then
b1 = k − 2 j ′ and b2 = f ′; if not, then b1 = f ′), so no error happens.

Proof of Theorem 1 We run Algorithm Sub and AlgorithmRep in parallel (that is, after
reading s[i] the i th iteration of each algorithm is performed; the order does not matter).
If s contains a run of exponent at least 2 + ε, Algorithm Rep finds lexp(s) with the
error less than ε. If any of the algorithms detects a repetition x (Algorithm Sub detects
repetitions with the condition in line 8), then lexp(s) ≥ exp(x) ≥ 2. So either exp(x)
is a valid answer to approxExp, or lexp(s) ≥ 2+ε and the answer can be found solely
by Algorithm Rep. Hence, on detecting a repetition we stop Algorithm Sub and run
Algorithm Rep for the rest of the stream.

Now suppose that no repetitions were found. Let x be a substring of s satisfying
lexp(s) = exp(x) ≥ 1+ε. ByLemma4, the answer obtained byAlgorithmSub cannot
be smaller than exp(z), where z is the core of x . By Lemma 3, exp(z) > exp(x) − ε.
Hence Algorithm Sub solved approxExp correctly.

Algorithm Rep obliges the required space and time limitations by Theorem 2. It
remains to estimate space and time consumed by Algorithm Sub. The space usage of

Algorithm Sub is dominated by groups, which occupy O(
log2 n

ε
) words of space by

Remark 2. The logarithmic time bounds for lines 2, 3, and 5 were proved in [15]; the
remaining part of the algorithm uses O(1) operations per value of j (for �log p see
Remark 1), which is O(log n) per iteration.
�

6 Conclusion and Open Questions

In this paper we presented the first streaming algorithm to compute the exponent of the
input string. As often happens for streaming problems, the solution belongs to the class
of Monte Carlo approximation algorithms because neither deterministic algorithms
nor exact Monte Carlo algorithms can solve the problem in sublinear memory. Our
algorithm has competitive parameters: its space usage is polynomial in log n and linear

123

Algorithmica (2022) 84:742–756 755

in 1/ε, where n is the length of the input and ε is the additive error parameter. The
O(log n) update time is also close to the minimum possible. In addition, our algorithm
uses only practical data structures and the O-bounds hide no big constants.

Thus the natural question is “can one do better?” More specifically,

• Are there any space or time lower bounds for the approxExp problem?
• Is it possible to improve space usage?
• Is it possible to improve the update time to “pure” O(log n), without dictionary
operations?

Concerning the last question, we reproduce the remark from [15] on the choice of
dictionaries, which shows what is the current “pure” time bound.

Remark 4 If ε is small (inverse polynomial), itmakes sense to use dynamic perfect hash
tables [2,8] as dictionaries. Both cited versions guarantee thatwith probability 1−m−c,
where m is the dictionary size and c is an arbitrary constant, all dictionary operations
will takeO(1) time. Thus the total probability of a failed run of an algorithm can still
be kept below 1/n withO(log n) elementary operations between reads. However, this
is not the case for big (such as constant or inverse polylog) values of ε. So in this case
we suggest to use deterministic dictionaries by Anderson and Thorup [1] which give

us O(√ log log n
log log log n · log n)

elementary operations between reads.

References

1. Andersson, A., Thorup, M.: Dynamic ordered sets with exponential search trees. J. ACM 54(3), 13
(2007)

2. Arbitman, Y., Naor, M., Segev, G.: De-amortized cuckoo hashing: Provable worst-case performance
and experimental results. In: 36th International Colloquium Automata, Languages and Programming,
ICALP 2009, Lecture Notes in Computer Science, vol. 5555, pp. 107–118. Springer (2009)

3. Badkobeh, G., Crochemore, M., Toopsuwan, C.: Computing the maximal-exponent repeats of an
overlap-free string in linear time. In: Proceedings 19th International Symposium String Processing
and Information Retrieval, SPIRE 2012, Lecture Notes in Computer Science, vol. 7608, pp. 61–72.
Springer (2012)

4. Brandenburg, F.J.: Uniformly growing k-th power-free homomorphisms. Theoret. Comput. Sci. 23,
69–82 (1983)

5. Breslauer, D., Galil, Z.: Real-time streaming string-matching. In: Combinatorial pattern matching.
LNCS, vol. 6661, pp. 162–172. Springer, Berlin (2011)

6. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kundu, R., Pissis, S.P., Radoszewski, J., Rytter,
W., Walen, T.: Near-optimal computation of runs over general alphabet via non-crossing LCE queries.
In: 23rd International Symposium String Processing and Information Retrieval, SPIRE 2016, Lecture
Notes in Computer Science, vol. 9954, pp. 22–34 (2016)

7. Crochemore, M., Kolpakov, R., Kucherov, G.: Optimal bounds for computing α-gapped repeats. Inf.
Comput. 268, 104434 (2019)

8. Dietzfelbinger, M., auf der Heide, F.M.: Dynamic hashing in real time. In: Informatik, pp. 95–119.
Springer (1992)

9. Fredman,M.L.,Willard, D.E.: Surpassing the information theoretic boundwith fusion trees. J. Comput.
Syst. Sci. 47(3), 424–436 (1993)

10. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM J. Res. Dev. 31(2),
249–260 (1987)

11. Knuth, D.E., Morris, J., Pratt, V.: Fast pattern matching in strings. SIAM J. Comput. 6, 323–350 (1977)
12. Kolpakov, R., Podolskiy, M., Posypkin, M., Khrapov, N.: Searching of gapped repeats and subrep-

etitions in a word. In: Proceedings 25th Annual Symposium Combinatorial Pattern Matching, CPM

123

756 Algorithmica (2022) 84:742–756

2014, Moscow, Russia, June 16-18, 2014, Lecture Notes in Computer Science, vol. 8486, pp. 212–221.
Springer (2014)

13. Kolpakov, R.M., Kucherov, G.: Finding maximal repetitions in a word in linear time. IEEE Comput.
Soc. 99, 596–604 (1999)

14. Merkurev, O., Shur, A.M.: Searching long repeats in streams. In: 30th Annual Symposium on Combi-
natorial Pattern Matching CPM 2019, LIPIcs, vol. 128, pp. 1–14 (2019)

15. Merkurev, O., Shur, A.M.: Searching runs in streams. In: Proceedings 26th International Symposium
String Processing and Information Retrieval, SPIRE 2019, Lecture Notes in Computer Science, vol.
11811, pp. 203–220. Springer (2019)

16. Porat, B., Porat, E.: Exact and approximate pattern matching in the streaming model. In: 50th Annual
IEEE Symposium on Foundations of Computer Science, 2009. FOCS’09. pp. 315–323. IEEE (2009)

17. Shur, A.M.: Growth of power-free languages over large alphabets, vol. 6072, pp. 350–361. Springer,
Berlin (2010)

18. Shur, A.M.: Growth properties of power-free languages. Comput. Sci. Rev. 6, 187–208 (2012)
19. Thue, A.: Über unendliche Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 7, 1–22 (1906)
20. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk. Skr.

Mat. Nat. Kl. 1, 1–67 (1912)
21. Yao, A.: Probabilistic computations: toward a unified measure of complexity. In: Proceedings of the

18th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 222–227 (1977)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Computing The Maximum Exponent in a Stream
	Abstract
	1 Introduction
	2 Preliminaries
	3 The Square-Freeness Problem
	4 Tools
	4.1 Fingerprints, Frames, Checkpoints
	4.2 Blocks, Groups, Navigation

	5 Algorithm Sub
	6 Conclusion and Open Questions
	References

