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Abstract
We observe that for each n ≥ 2, the identities of the stylic monoid with n generators
coincide with the identities of n-generated monoids from other distinguished series
of J -trivial monoids studied in the literature, e.g., Catalan monoids and Kiselman
monoids. This solves the Finite Basis Problem for stylic monoids.
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A monoid identity is a pair of words, i.e., elements of the free monoid X∗ over an
alphabet X , written as a formal equality. An identity w = w′ with w,w′ ∈ X∗ is
said to hold in a monoid M if wϕ = w′ϕ for each homomorphism ϕ : X∗ → M ;
alternatively, we say that the monoid satisfies w = w′ or that w = w′ is an identity of
M .

Given any set � of monoid identities, we say that an identity w = w′ follows
from � if every monoid satisfying all identities of � satisfies the identity w = w′ as
well. Birkhoff’s completeness theorem of equational logic (see [4, Theorem 14.17])
shows that this notion (which we have given a semantic definition) is captured by a
transparent set of inference rules. The syntactic viewpoint is often useful but is not
utilized in this note.

Given a monoid M , a set � of its identities is said to be an identity basis for M if
every identity holding in M follows from �. The Finite Basis Problem for a monoid
M is the question of whether or not M admits a finite identity basis.

A monoid M is said to be J -trivial if every principal ideal of M has a unique
generator, that is, MaM = MbM implies a = b for all a, b ∈ M . Finite J -trivial
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monoids attract much attention because of their distinguished role in algebraic theory
of regular languages [15, 17, 18] and representation theory [9].

Several series of finiteJ -trivialmonoids parameterized by positive integers appear
in the literature, including Straubing monoids [20, 21], Catalan monoids [19], double
Catalan monoids [16], Kiselman monoids [11, 13, 14], and gossip monoids [7, 10,
12]. These monoids arise due to completely unrelated reasons and consist of elements
of a very different nature. Surprisingly, studying identities of the listed monoids has
revealed that the n-th monoids in each series satisfy exactly the same identities! This
was first observed by the author [21] for Straubing and Catalan monoids. Then, in [3]
the result was extended to Kiselman monoids, and more generally, to a wide spectrum
of Hecke–Kiselmanmonoids from [11].Marianne Johnson and Peter Fenner [12] have
added double Catalan, gossip, and one-directional gossip monoids to the list.

Recently, a new family of finiteJ -trivial monoids, coined stylicmonoids, has been
introduced byAntoineAbram andChristophe Reutenauer [1], withmotivation coming
from combinatorics of Young tableaux. It is quite natural to ask whether the above
phenomenon extends to this new family, i.e., whether the n-th stylic monoid again
satisfies the same identities as the n-th monoids in each aforementioned series. The
present note aims to answers this question in the affirmative. When it was submitted
and its preprint version [22] appeared on arXiv,DuarteRibeiro informed the author that
he and Thomas Aird obtained the same result independently and contemporaneously,
albeit with a somewhat more complicated proof, see [2].

The combinatorial definition of stylic monoids can be found in [1], but here we
only need their presentation via generators and relations established in [1, Theorem
8.1(ii)]. Thus, let the stylic monoid Styln be the monoid generated by a1, a2, . . . , an
subject to the relations

a2i = ai for each i = 1, . . . , n; (1)

a jaiak = a jakai if 1 ≤ i < j < k ≤ n; (2)

aiaka j = akaia j if 1 ≤ i < j < k ≤ n; (3)

a jaiai = aia j ai if 1 ≤ i < j ≤ n; (4)

a ja jai = a jaia j if 1 ≤ i < j ≤ n. (5)

We want to relate Styln to two other monoids with same generating set. The Kisel-
man monoid Kisn , defined by Christer Kiselman [13] for n = 3 and by Olexandr
Ganyushkin and Volodymyr Mazorchuk (unpublished) for an arbitrary n ≥ 2, is gen-
erated by a1, a2, . . . , an subject to the relations

a2i = ai for each i = 1, . . . , n; (6)

aia jai = a jaia j = a jai if 1 ≤ i < j ≤ n. (7)

Catalan monoids were defined by Andrew Solomon [19] as monoids of certain trans-
formations on directed paths, but again, we only need their presentation via generators
and relations from [19, Section 9], see also [11] for a short argument. So, for the pur-
pose of this note, let Catn stand for the monoid generated by a1, a2, . . . , an subject to
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the relations

a2i = ai for each i = 1, . . . , n; (8)

aiak = akai if |i − k| ≥ 2, i, k = 1, . . . , n; (9)

aiai+1ai = ai+1aiai+1 = ai+1ai for each i = 1, . . . , n − 1. (10)

Lemma 1 The relations (2)–(5) hold in the monoid Catn.

Proof If i, j, k ∈ {1, 2, . . . , n} are such that i < j < k, then k − i ≥ 2 whence

a jaiak
(9)= a jakai and aiaka j

(9)= akaia j in Catn . Thus, (2) and (3) hold in Catn .

If 1 ≤ i < j ≤ n and j−i ≥ 2, we can apply (9) in a similar way: a jaiai
(9)= aia jai

and a ja jai
(9)= a jaia j . Therefore, to prove that (4) and (5) hold in Catn , it remains to

consider the case j = i + 1. In this case, we can deduce in Catn the following:

ai+1aiai
(8)= ai+1ai

(10)= ai+1aiai+1 and ai+1ai+i ai
(8)= ai+1ai

(10)= aiai+1ai .

Hence (4) and (5) also hold in Catn for all i, j with 1 ≤ i < j ≤ n. �	
Lemma 2 The relations (7) hold in the monoid Styln.

Proof For any i, j ∈ {1, 2, . . . , n} with i < j , we can deduce in Styln the following:

aia jai
(4)= a jaiai

(1)= a jai and a jaia j
(5)= a ja jai

(1)= a jai .

Hence the relation aia jai = a jaia j = a jai holds in Styln . �	
Theorem 1 For each n ≥ 2, the monoid Catn is a homomorphic image of Styln, and
the monoid Styln is a homomorphic image of Kisn.

Proof We invoke Dyck’s Theorem (see, e.g., [8, Theorem III.8.3]). Specialized in the
case of monoids, it says that if M is a monoid generated by a set A subject to relations
R and N is a monoid generated by A and such that all the relations R hold in N , then
N is a homomorphic image of M . In view of this fact, Lemma 1 implies that Catn is
a homomorphic image of Styln , while Lemma 2 ensures that Styln is a homomorphic
image of Kisn . �	
Corollary 1 For each n ≥ 2, the monoids Catn, Styln, and Kisn satisfy the same
identities.

Proof Clearly, if a monoid M satisfies an identity, then so does every homomorphic
image of M . Therefore, Theorem 1 implies that every identity holding in Kisn holds in
Styln , and every identity holding in Styln holds in Catn . However, it follows from [3,
Theorem 8] that for each n ≥ 2, the monoids Catn and Kisn satisfy the same identities.
Hence the same identities hold in the ‘intermediate’ monoid Styln as well. �	

123



348 M. V. Volkov

Since the identities of themonoids Catn andKisn have been characterized in [3, 21],
Corollary 1 leads to an efficient combinatorial description of the identities of stylic
monoids. The description involves the notion of a scattered subword. Recall that a
product x1 · · · xk of elements from an alphabet X is said to be a scattered subword of
length k in a word v ∈ X∗ if there exist words v0, v1, . . . , vk−1, vk ∈ X∗ such that
v = v0x1v1 · · · vk−1xkvk ; in other terms, x1 · · · xk is a subsequence of v. The following
is a combination of Corollary 1 with either [21, Proposition 4 and Corollary 2] or [3,
Theorem 8].

Corollary 2 An identity w = w′ holds in the monoid Styln if and only if the words w

and w′ have the same set of scattered subwords of length at most n.

As yet another immediate application, we get a solution to the Finite Basis Problem
for stylic monoids. It comes from Corollary 2 combined with results by Francine
Blanchet-Sadri [5, 6].

Corollary 3 (a) The identities xyxzx = xyzx, (xy)2 = (yx)2 form an identity basis
for the monoid Styl2.

(b) The identities xyx2zx = xyxzx, xyzx2t z = xyxzx2t z, zyx2zt x = zyx2zxtx,
(xy)3 = (yx)3 form an identity basis for the monoid Styl3.

(c) The monoid Styln with n ≥ 4 admits no finite identity basis.
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