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A groupoid is a small category in which all morphisms are isomorphisms. An 
inductive groupoid is a specialized groupoid whose object set is a regular biordered 
set and the morphisms admit a partial order. A normal category is a specialized
small category whose object set is a strict preorder and the morphisms admit a 
factorization property. A pair of ‘related’ normal categories constitutes a cross-
connection. Both inductive groupoids and cross-connections were identified by 
Nambooripad as categorical models of regular semigroups. We explore the inter-
relationship between these seemingly different categorical structures and prove a 
direct category equivalence between the category of inductive groupoids and the 
category of cross-connections.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In the 1880s, Sophus Lie introduced pseudogroups1 as generalizations of Lie groups appropriate in the 
context of his work in geometries of infinite dimension; see [17, Chapter 1]. After algebra had managed to 
exempt the idea of a group from its geometric cradle and developed the abstract concept of a group, the quest 
for the abstract structure represented by pseudogroups began. This quest led to two main solutions in the 
1950s. The first solution proposed independently by Wagner [34] and Preston [24] involved the introduction 
of inverse semigroups. The second solution provided by Ehresmann [10,11] used the categorical idea of a 
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groupoid. Later, Schein [29,30] connected Ehresmann’s work on differential geometry with Wagner’s ideas 
on inverse semigroups to provide a structure theorem for inverse semigroups using groupoids.

Incidentally, inverse semigroups, born around the 1950s, were a special instance of a much more general 
concept invented earlier and for a completely different purpose. In the 1930s, von Neumann [32,33] introduced 
and made a deep study of regular rings in his ground-breaking work on continuous geometry. A ring R is 
said to be (von Neumann) regular if for every a ∈ R, there exists b ∈ R such that aba = a. Observe that 
the regularity of a ring is in fact a property of its multiplicative semigroup so that it is fair to say that von 
Neumann introduced regular semigroups as well, even though he did not use the latter term. Beyond the 
class of multiplicative semigroups of regular rings, examples of regular semigroups are plentiful and include 
many natural and important objects such as the semigroup of all transformations of a set. Certain species of 
regular semigroups were studied as early as 1940; see [8,27], and by the 1970s, studying regular semigroups 
became a hot topic in the blossoming area of the algebraic theory of semigroups.

Regular semigroups arguably form the most general class of semigroups which admits a notion of inverse 
elements that naturally extends the corresponding notion for groups. Namely, two elements a, b of a semi-
group S are said to be inverses of each other if aba = a and bab = b. It is well known and easy to see that 
a semigroup is regular if and only if each of its elements has an inverse. Inverse semigroups can be defined 
as semigroups in which every element has a unique inverse. In a given inverse semigroup S, the map that 
assigns to each element a its unique inverse a−1 can be seen to constitute an involutary anti-automorphism 
of S, similarly to the case of groups. Hence, the usual right-left duality reduces to a mere isomorphism: if 
Sop denotes the dual2 of S, then S is isomorphic to Sop under the map a �→ a−1, whenever S is inverse. 
Thus, an inverse semigroup seen from the left looks the same as from the right. As we move to general 
regular semigroups, this inbuilt symmetry is lost, and the right-left duality may become highly nontrivial. 
In particular, providing structure theorems for regular semigroups using categories requires inventing cat-
egorical structures that would be less symmetric than groupoids on the one hand but still possess some 
intrinsic duality on the other hand, quite a challenging task!

There are two successful approaches to this task, both due to Nambooripad. They rely on the idea of 
replacing a ‘too symmetric’ object by a couple of interconnected ‘unilateral’ objects. We observe in passing 
that this idea has got other interesting incarnations in categorical algebra. As examples, consider Loday’s 
approach to Leibniz algebras [18] or the recent notion of a constellation studied by Gould, Hollings, and 
Stokes [12,13,31].3

Nambooripad’s first approach [22] takes as its starting point the structure of idempotents in a semigroup. 
Recall that an element e of a semigroup S is called an idempotent if e2 = e. On the set E(S) of all 
idempotents of S, one can define the relation � letting e � f for e, f ∈ E(S) if and only if e = ef = fe. It 
is easy to see that � is a partial order on E(S). In inverse semigroups idempotents commute (in fact, it is 
this property that specifies inverse semigroups within the class of regular semigroups) whence (E(S), �) is a 
semilattice. This semilattice plays a crucial role in the structure theory of inverse semigroups. Nambooripad 
[22] considered general semigroups, for which he ‘split’ the partial order � into two interconnected preorders. 
This led him to the notion of a biordered set as the abstract model of the idempotents of an arbitrary 
semigroup. Nambooripad isolated a property that characterizes biordered sets of regular semigroups and 
developed the notion of an inductive groupoid on the base of this characterization. This way, the category 
IG of inductive groupoids arose, the first of the two categories being the objects of the present paper. 

2 Recall that Sop is defined on the same set as S but the multiplication ◦ on Sop is defined by a ◦ b := b · a, where · stands for 
the multiplication in S.
3 Leibniz algebras are non-anticommutative versions of Lie algebras. A standard way to produce a Lie algebra is to define Lie 

bracket [x, y] := xy − yx on an associative algebra A; the bracket operation is clearly anticommutative, that is, [x, y] = −[y, x]. 
Loday ‘splits’ the multiplication in A into two by considering two associative operations: the ‘right’ product x � y and the ‘left’ 
product x � y which are interconnected by certain axioms. The axioms ensure that the bracket [x, y] := x � y − y � x satisfies the 
Leibniz law 

[
[x, y], z

]
=

[
[x, z], y

]
+

[
x, [y, z]

]
while the anticommutativity may fail. In a similar way, constellations are partial 

algebras that are one-sided generalizations of categories.
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Using this category, Nambooripad generalized Schein’s work to regular semigroups and proved a category 
equivalence between the category of regular semigroups and the category IG.

Later, Nambooripad [23], building on an alternative approach initiated by Hall [15] and Grillet [14], 
introduced the notion of a normal category as the abstract categorical model of principal one-sided ideals 
of a regular semigroup. Each regular semigroup S gives rise to two normal categories: one that models the 
principal left ideals of S and another one that corresponds to the principal right ideals. In the treatise [23], 
which was — quoting Meakin and Rajan [20] — “somewhat reminiscent of von Neumann’s foundational 
work on regular rings”, Nambooripad devised a structure called a cross-connection which captured the non-
trivial interrelation between these two normal categories. Cross-connections also form a category, denoted 
by CC, which constitutes the second main object of the present paper. Nambooripad mastered the category 
CC as an alternate technique to describe regular semigroups; namely, he proved that the category of regular 
semigroups is equivalent to CC.

The two approaches of Nambooripad seemed unrelated if not orthogonal to each other. However, the 
present authors [7] established an equivalence between inductive groupoids and cross-connections that ‘by-
passes’ regular semigroups in the sense that the equivalence between IG and CC exposited in [7] was not 
a mere composition of the aforementioned categorical equivalences found in [22,23]. Still, the equivalence 
from [7] remained in the realm of regular semigroups: what we did is that we explored the inter-relationship 
between the idempotent structure and ideal structure in an arbitrary regular semigroup to establish how 
one can be retrieved from the other. In the present paper, we make one further step. Namely, we discuss 
inductive groupoids and cross-connections in a purely categorical setting and build upon this a direct cate-
gory equivalence between the categories IG and CC, thus divorcing ourselves completely from a semigroup 
setting.

The rest of the paper is divided into five sections. In Section 2, we briefly discuss some preliminaries needed 
for the sequel; in particular, we introduce inductive groupoids and cross-connections. In the next section, we 
construct the inductive groupoid associated with a given cross-connection and build a functor I : CC → IG. 
In Section 4, we construct a cross-connection from an inductive groupoid and the corresponding functor 
C : IG → CC. In Section 5, we verify that the functor IC is naturally isomorphic to the functor 1CC

and the functor CI is naturally isomorphic to the functor 1IG, thus establishing the category equivalence 
between IG and CC. The final section re-discusses the results and outlines some possible developments.

2. Preliminaries

We assume the reader’s acquaintance with basic notions of category theory [19]. As mentioned, the ideas 
discussed in the paper arose in the realm of regular semigroups; however, here we deal with them in the 
realm of categories only. So, although a semigroup background may be helpful, it is not a prerequisite for 
understanding the constructions in the paper. The reader interested in a more detailed presentation of the 
genesis of the concepts of an inductive groupoid and a cross-connection and their role within semigroup 
theory may find rather a self-contained account of this material in [7, Sections 1 and 2].

Our basic notational conventions are the following. For a small category C , its set of objects is denoted 
by vC and its set of morphisms is denoted by C itself. For c, d ∈ vC , the set all morphisms from c to d is 
denoted by C (c, d). We compose functions and morphisms from left to right so that in expressions like fg
or γ ∗ δ etc., the left factor applies first.

2.1. Biordered sets

Let E be a set with a partial binary operation denoted by juxtaposition. Let DE ⊆ E ×E stand for the 
domain of the partial operation. Define two binary relations and on the set E as follows:
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e f⇐⇒ (e, f) ∈ DE and ef = e; e f ⇐⇒ (f, e) ∈ DE and fe = e.

We use the notation and for the ‘symmetric versions’ of respectively and ; that is, 
:= ∩ ( )−1 and := ∩ ( )−1. Also, we let := ∩ .

Recall that a preorder is a reflexive and transitive binary relation. The partial algebra E as above is said 
to be a biordered set if the following axioms hold for all e, f, g ∈ E:

(B1) both and are preorders, and DE = ∪ ∪ ( ∪ )−1;

(B2) if e f ;fee f , then if e f ;efe f , then

(B3) if 

e

f g, then fe ge and (gf)e = (ge)(fe);

if 

e

f g, then ef eg and e(fg) = (ef)(eg);

(B4) if e f g, then f(ge) = fe ; if e f g, then (eg)f = ef ;

(B5) if 
f e g

and ef eg, there exists f ′ ∈ E such that f ′ g

e

and ef ′ = ef ;

if 
f e g

and fe ge, there exists f ′ ∈ E such that f ′ g

e

and f ′e = fe.

Further, for any two elements e, f ∈ E, their sandwich set S (e, f) is defined as follows:

h ∈ S (e, f) ⇐⇒ e h f and for every g ∈ E such that e g f , one has 
gf hf and eg eh.

A biordered set E is regular if for every e, f ∈ E, the sandwich set S (e, f) is non-empty.
Given two biordered sets E and E′ with the domains of partial operations DE and DE′ respectively, we 

define a bimorphism as a mapping θ : E → E′ satisfying:

(BM1) (e, f) ∈ DE =⇒ (eθ, fθ) ∈ DE′ ;
(BM2) (ef)θ = (eθ)(fθ).

Observe that a bimorphism θ necessarily preserves arrows: for example, if e f , then eθ fθ, and 

so on. If E is a regular biordered set, then a bimorphism θ : E → E′ is called a regular bimorphism if it 
satisfies:

(RBM) (S (e, f))θ ⊆ S ′(eθ, fθ).

The above used arrow notation for the preorders in biordered sets was introduced by Easdown [9]. It 
allows one to present the axioms of a biordered set in a concise way and may be helpful for fresh readers. 
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In the sequel, we shall refer to the partial binary operation of a biordered set as the basic product and we 
mostly use the following alternative notation to denote the preorders (for ease of writing and to save the 
arrow → for maps and morphisms):

e �� f ⇐⇒ e f ⇐⇒ e f = e and e �r f ⇐⇒ e f ⇐⇒ f e = e.

In a given biordered set E with preorders �� and �r, we can easily see that the relations L := �� ∩ (��)−1

= and R := �r ∩ (�r)−1 = are equivalence relations while the relation �:= �� ∩ �r =
is a partial order.

Although the axioms of biordered sets are complicated and may appear slightly artificial, biordered sets 
arise quite naturally in several mathematical contexts. If a semigroup S has idempotents, the set E(S) of 
all idempotents of S can be seen to form a biordered set whose partial operation is a certain restriction of 
the multiplication of S. In [22], the biordered sets of the form E(S) where S is a regular semigroup were 
characterized by Nambooripad as regular biordered sets. Later, Easdown [9] showed that given a biordered 
set E, we can always construct a semigroup S such that E(S) and E are isomorphic as biordered sets. 
Beyond semigroups, Putcha [25] showed that pairs of opposite parabolic subgroups of a finite group of Lie 
type form a biordered set.

In this paper, we do not need the explicit use of the biorder axioms except in a few proofs; nevertheless 
we have included the full set of axioms for the sake of completeness.

2.2. Ordered groupoids

The notion of an ordered groupoid was introduced by Ehresmann [10,11] in the context of his work on 
pseudogroups. Ordered groupoids are essentially groupoids such that their morphisms admit a partial order 
compatible with the composition. Recall that our convention is to compose the morphisms from left to right.

Definition 2.1. Let G be a groupoid and denote by d : G → vG and r : G → vG its domain and codomain 
maps, respectively. Let ≤ be a partial order on G . Then (G , ≤) is called an ordered groupoid if the following 
hold for all e, f ∈ vG and all x, y, u, v ∈ G .

(OG1) If u ≤ x, v ≤ y and r(u) = d(v), r(x) = d(y), then uv ≤ xy.
(OG2) If x ≤ y, then x−1 ≤ y−1.
(OG3) If 1e ≤ 1d(x), then there exists a unique morphism e�x ∈ G (called the restriction of x to e) such 

that e�x ≤ x and d(e�x) = e.
(OG3∗) If 1f ≤ 1r(x), then there exists a unique morphism x�f ∈ G (called the corestriction of x to f) such 

that x�f ≤ x and r(x�f) = f .

Observe that in an ordered groupoid (G , ≤), the restriction of ≤ to the identity morphisms in G induces 
a partial order on the set vG of the objects of the groupoid. An order preserving functor F between two 
ordered groupoids is said to be a v-isomorphism if its object map vF is an order isomorphism.

2.3. Inductive groupoids

We are approaching the definition of the category of inductive groupoids, the first of the two main objects 
of this paper. Roughly speaking, an inductive groupoid is an ordered groupoid whose object set is a regular 
biordered set and containing certain distinguished morphisms which are induced by alternating sequences 
of R- and L -related elements of the biordered set. To formalize this rough idea, we start with associating 
an ordered groupoid with any given (not necessarily regular) biordered set E.

An E-path is a sequence (e1, e2, . . . , en) of elements of E such that ei (R ∪ L ) ei+1 for all i = 1, . . . , n −1. 
An element ei in such an E-path is called inessential if ei−1 R ei R ei+1 or ei−1 L ei L ei+1. Two E-
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paths that share the same first and last elements are said to be essentially the same if each of them can be 
obtained from the other by a sequence of adding or removing inessential elements. Clearly, this defines an 
equivalence relation on the set of all E-paths. The equivalence class of an E-path relative to this relation is 
referred to as an E-chain. In the sequel, we take the liberty of using expressions like ‘let c = (e1, e2, . . . , en)
be an E-chain’, meaning, of course, the equivalence class of all E-paths that are essentially the same as 
(e1, e2, . . . , en).

The set G (E) of all E-chains can be thought of as a groupoid if we consider each E-chain c =
(e1, e2, . . . , en) as a morphism with domain e1 and codomain en. The composition of two E-chains, say, 
c as above and c′ = (f1, f2, . . . , fm), is defined if and only if en = f1, and if so, then the product cc′ is set 
to be equal to the E-chain containing the E-path

(e1, e2, . . . , en = f1, f2, . . . , fm).

The inverse of c is the E-chain (en, en−1, . . . , e1).
Further, we introduce a binary relation ≤E on the set G (E). Let c = (e1, e2, . . . , en) and c′ =

(f1, f2, . . . , fm) be two E-chains. Suppose that e1 � f1 in E and define the sequence h1, h2, . . . , hm in-
ductively by letting h1 := e1 and hi := (fihi−1)fi for each i = 2, 3, · · · , m. Using the assumption e1 � f1
and the axioms of a biordered set, it is easy to check that all h2, . . . , hm are indeed well-defined elements 
of E, and moreover, (h1, h2, . . . , hm) forms an E-path. Now we let c ≤E c′ if and only if e1 � f1 and the 
E-paths (e1, e2, . . . , en) and (h1, h2, . . . , hm) are essentially the same. Alternatively, c ≤E c′ if and only if 
for any E-path (f1, f2, . . . , fm) in the E-chain c′, there exists an E-path (h1, h2, . . . , hm) in the E-chain c
such that hi � fi for each i = 1, 2, . . . , m. It can be shown (see [22, Proposition 3.3]) that ≤E is a partial 
order on G (E) and the pair (G (E), ≤E) constitutes an ordered groupoid. The partial order ≤E may be seen 
as an extension of the natural partial order � of the biordered set E to the set G (E).

Given a biordered set E, a 2 × 2 matrix 
[ e f
g h

]
of elements of E such that

e R f L h R g L e

or, in Easdown’s arrow notation,

e f

g h

stands for the E-path (e, f, h, g, e). We refer to the E-chain corresponding to this E-path as an E-square
and allow ourselves expressions like ‘

[ e f
g h

]
forms an E-square’.

Given e, g, h in a biordered set E such that g, h �� e and g R h, one can easily deduce from axioms 
(B2) and (B3) that 

[ g h
eg eh

]
forms an E-square. Such an E-square is called row-singular. Dually, we define 

a column-singular E-square, and an E-square is said to be singular if it is either row-singular or column-
singular.

Given an ordered groupoid G and a v-isomorphism ε : G (E) → G , an E-square 
[ e f
g h

]
is said to be 

ε-commutative if

ε(e, f)ε(f, h) = ε(e, g)ε(g, h). (1)

Observe that to simplify notation in (1), we denoted the image of the E-chain (e, f) under ε by ε(e, f)
rather than ε((e, f)) and did so also for the other E-chains that occur in (1). This convention, of leaving 
out unnecessary braces when there is no ambiguity regarding the expression, shall be followed in the sequel.
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Definition 2.2. Let E be a regular biordered set, let G be an ordered groupoid, and let ε : G (E) → G be a 
v-isomorphism, called an evaluation functor. We say that (G , ε) forms an inductive groupoid if the following 
axioms and their duals hold.

(IG1) Let x ∈ G and for i = 1, 2, let ei, fi ∈ E be such that e1 �r e2, ε(ei) ≤ d(x) and ε(fi) = r(ε(ei)�x). 
Then f1 �r f2, and

ε(e1, e1e2)(ε(e1e2)�x) = (ε(e1)�x)ε(f1, f1f2).

(IG2) All singular E-squares are ε-commutative.

Let (G , ε) and (G ′, ε′) be two inductive groupoids with biordered sets E and E′ respectively. Suppose that 
F : G → G ′ is an order preserving functor such that its object map vF : E → E′ is a regular bimorphism of 
biordered sets. Then vF induces a unique order preserving functor G (vF ) between the ordered groupoids of 
E-chains G (E) and G (E′) defined as follows; see [22, Proposition 3.3]. For every E-chain c = (e1, e2, . . . , en)
in G (E),

G (vF )(c) := (vF (e1), vF (e2), . . . , vF (en)).

The order preserving functor F is said to be inductive if the following diagram commutes.

G (E)
G (vF )

ε

G (E′)

ε′

G
F

G ′

Proposition 2.1 ([22, Remark 3.1]). Inductive groupoids with inductive functors as morphisms form a cate-
gory.

We denote the category of inductive groupoids with inductive functors by IG.

2.4. Normal categories

Now, we proceed to introduce the second main object of this paper: the category of cross-connections. 
Again, the construction requires several steps. We begin by discussing normal categories.

Recall that a preorder P is said to be strict if identity morphisms are the only isomorphisms in P. 
Observe that a small preorder is strict if and only if it is induced by a partially ordered set.

Let C be a small category and P a subcategory of C such that P is a strict preorder category with 
vP = vC . The pair (C , P) is called a category with subobjects if, first, every f ∈ P is a monomorphism in 
C and, second, if f, g ∈ P and h ∈ C are such that f = hg, then h ∈ P.

In a category (C , P) with subobjects, the morphisms in P are called inclusions. We write c′ ⊆ c if there 
is an inclusion c′ → c, and we denote this inclusion by j(c′, c). An inclusion j(c′, c) splits if there exists a 
morphism q : c → c′ ∈ C such that j(c′, c)q = 1c′ . In this situation, the morphism q is called a retraction.

A normal factorization of a morphism f : c → d in C is a factorization of the form f = quj where 
q : c → c′ is a retraction, u : c′ → d′ is an isomorphism, and j = j(d′, d) is an inclusion, where c′, d′ ∈ vC

are such that c′ ⊆ c, d′ ⊆ d. Fig. 1 represents the normal factorization property.
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c
f

q

d

c′

u

d′

j

Fig. 1. Normal factorization of a morphism f .

The morphism qu is called the epimorphic component of the morphism f and is denoted by f◦. It can be 
seen that f◦ is uniquely determined by f . The codomain of f◦ is called the image of the morphism f and 
is denoted by im f . The following properties of epimorphic components may prove crucial in the sequel:

Proposition 2.2 ([23, Corollary II.4]). Let C be a category with normal factorization property where inclu-
sions split.

(1) If f and g are composable such that the inclusion of f is jf = j(im f, r(f)), then

(fg)◦ = f◦(jfg)◦.

(2) If f is an epimorphism, then f◦ = f .

Definition 2.3. Let C be a category with subobjects and d ∈ vC . A map γ : vC → C is called a cone4 from 
the base vC to the apex d if:

(Ncone1) γ(c) is a morphism from c to d for each c ∈ vC ;
(Ncone2) if c ⊆ c′, then j(c, c′)γ(c′) = γ(c);
(Ncone3) there exists c ∈ vC such that γ(c) : c → d is an isomorphism.

The apex of the cone γ shall be denoted by cγ in the sequel.

A cone γ is said to be idempotent if γ(cγ) = 1cγ . It is easy to verify that for any cone γ and any 
epimorphism f : cγ → d, the map vC → C defined by a �→ γ(a)f is a cone with apex d. This cone is 
denoted by γ ∗ f .

Definition 2.4. A category C with subobjects is called a normal category if the following holds.

(NC1) Any morphism in C has a normal factorization.
(NC2) Every inclusion in C splits.
(NC3) For each c ∈ vC , there is an idempotent cone with apex c.

Natural examples of a normal category include the powerset category (subsets of a set with functions 
as morphisms) [5], the subspace category (subspaces of a vector space with linear transformations as mor-
phisms) [3], etc.

4 Notice that what we call a cone here was called a normal cone in [7,23].



P.A. Azeef Muhammed, M.V. Volkov / Journal of Pure and Applied Algebra 226 (2022) 106940 9
2.5. Normal dual

The normal dual N∗C of a normal category C is a full subcategory of the category C ∗ of all functors 
from C to the category Set. The objects of N∗C are certain functors and the morphisms are natural 
transformations between them. Namely, for each cone γ in C , we define a functor (called an H-functor and 
denoted by H(γ; −)) from C to Set as follows. For each c ∈ vC and for each g ∈ C (c, d),

H(γ; c) is the set {γ ∗ f◦ : f ∈ C (cγ , c)} and

H(γ; g) is the map H(γ; c) → H(γ; d) given by γ ∗ f◦ �→ γ ∗ (fg)◦.

We define the M-set of a cone γ as

Mγ := {c ∈ C : γ(c) is an isomorphism}.

It can be shown that if two H-functors H(γ; −) and H(γ′; −) are equal, so are the M -sets of the cones γ
and γ′. Hence we can define the M -set of an H-functor as MH(γ; −) := Mγ.

It can be seen that H-functors are representable functors such that for a cone γ, there is a natural 
isomorphism ηγ : H(γ; −) → C (cγ , −). Here C (cγ , −) is the hom-functor determined by cγ .

It can be shown that the normal dual of a normal category is, in fact, normal (see [23, Section III.4.2]). 
The proof is quite non-trivial since it involves characterizing the morphisms in the normal dual, which are 
natural transformations. In some special cases, the normal dual can be transparently described; for instance, 
the normal dual of the subspace category has been described via the annihilator category [3], wherein the 
algebraic duality coincides with the cross-connection duality. In general, however, such simple descriptions 
do not appear to be possible.

2.6. Cross-connections

An ideal of a normal category C generated by its object c is the full subcategory of C , denoted 〈c〉, whose 
objects are given by

v〈c〉 := {d ∈ vC : d ⊆ c}.

A functor F between two normal categories C and D is said to be a local isomorphism if F is inclusion 
preserving, fully faithful and for each c ∈ vC , the restriction F|〈c〉 of F to the ideal 〈c〉 is an isomorphism 
of 〈c〉 onto the ideal 〈F (c)〉.

Definition 2.5. Let C and D be normal categories. A cross-connection from D to C is a triplet (D , C ; Γ)
(often denoted by just Γ), where Γ: D → N∗C is a local isomorphism such that for every c ∈ vC , there is 
some d ∈ vD such that c ∈ MΓ(d).

Observe that in the above definition, MΓ(d) is the M -set of the H-functor Γ(d). Given a cross-connection 
Γ between two normal categories C and D , we define the set EΓ as:

EΓ := {(c, d) ∈ vC × vD such that c ∈ MΓ(d)}. (2)

For a cross-connection Γ from D to C , it can be shown that there is a unique dual cross-connection
Δ = (C , D ; Δ) from C to D such that (c, d) ∈ EΓ if and only (d, c) ∈ EΔ. Then, for (c, d) ∈ EΓ, there is a 
unique idempotent cone ε in C such that cε = c and H(ε; −) = Γ(d); this cone is denoted by γ(c, d), in the 
sequel. Similarly δ(c, d) denotes a unique idempotent cone in D such that (d, c) ∈ EΔ.
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Given a cross-connection (D , C ; Γ) with dual Δ, (c, d), (c′, d′) ∈ EΓ, f ∈ C (c, c′) and f∗ ∈ D(d′, d), the 
morphism f∗ is called the transpose of f if f and f∗ make the following diagram commute:

c

f

Δ(c)
ηδ(c,d)

Δ(f)

D(d,−)

D(f∗,−)

d

c′ Δ(c′)
ηδ(c′,d′)

D(d′,−) d′

f∗

It is worth noting that cross-connection transposes enjoy several properties of usual matrix transposes. For 
instance, f∗∗ = f and (fg)∗ = g∗f∗.

Definition 2.6. Let (D , C ; Γ) and (D ′, C ′; Γ′) be two cross-connections. A morphism of cross-connections
m : Γ → Γ′ is a pair m = (Fm, Gm) of inclusion preserving functors Fm : C → C ′ and Gm : D → D ′

satisfying the following axioms:

(M1) if (c, d) ∈ EΓ, then (Fm(c), Gm(d)) ∈ EΓ′ and for all c′ ∈ vC ,

Fm(γ(c, d)(c′)) = γ(Fm(c), Gm(d))(Fm(c′));

(M2) if (c, d), (c′, d′) ∈ EΓ and f∗ : d′ → d is the transpose of f : c → c′, then Gm(f∗) is the transpose of 
Fm(f).

Proposition 2.3 ([23, Section V.2.1]). The cross-connections with cross-connection morphisms form a cate-
gory.

We denote by CC the category of cross-connections with cross-connection morphisms.

3. Inductive groupoid of a cross-connection

Recall that the aim of the present paper is to establish a category equivalence between the categories IG
and CC. In this section, given a cross-connection Γ = (D , C ; Γ), we identify the inductive groupoid (GΓ, εΓ)
associated with the cross-connection Γ. Further, we prove that this correspondence is also functorial.

3.1. Biordered set of a cross-connection

First, observe that for an element (c, d) ∈ EΓ, we can uniquely associate with it the pair of idempotent 
cones (γ(c, d), δ(c, d)). By suitably defining the basic products and preorders [23], the set EΓ can be realized
as the regular biordered set associated with the cross-connection Γ.

Define two preorders �� and �r on EΓ as follows. For any two elements (c, d) and (c′, d′) in EΓ,

(c, d) �� (c′, d′) ⇐⇒ c ⊆ c′ and (c, d) �r (c′, d′) ⇐⇒ d ⊆ d′. (3)

Also, we define basic products in EΓ as:



P.A. Azeef Muhammed, M.V. Volkov / Journal of Pure and Applied Algebra 226 (2022) 106940 11
(c, d)(c′, d′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(c, d), if c ⊆ c′;
(c′, im δ(c, d)(d′)), if c′ ⊆ c;
(c′, d′), if d′ ⊆ d;
(im γ(c′, d′)(c), d), if d ⊆ d′.

(4)

Then EΓ as defined in (2) forms a regular biordered set with preorders and basic products as defined in 
(3) and (4) respectively. This biordered set EΓ shall serve as the set of objects vGΓ of our required inductive 
groupoid GΓ.

3.2. Ordered groupoids of a cross-connection

Let (c, d), (c′, d′) ∈ EΓ. Consider an isomorphism f : c → c′. Then it has an inverse f−1 : c′ → c. Now let 
g : d → d′ be the transpose of f−1 relative to Γ, i.e., g := (f−1)∗. Then by [23, Corollary IV.23] and properties 
of transposes, the morphism g will be an isomorphism so that (f, g) will be a pair of isomorphisms in C ×D . 
So, a morphism in the inductive groupoid GΓ from (c, d) to (c′, d′) is defined as a pair (f, g) : (c, d) → (c′, d′). 
This is well-defined by the uniqueness of inverses and transposes for a fixed pair of objects in EΓ.

Lemma 3.1. GΓ is a groupoid.

Proof. First, observe that given two morphisms (f, g) from (c1, d1) to (c2, d2) and (f ′, g′) from (c2, d2) to 
(c3, d3), then by the composition in C and D , we have ff ′ : c1 → c3 and gg′ : d1 → d3. So (ff ′)−1 : c3 → c1
and by [23, Corollary IV.22],

((ff ′)−1)∗ = (f ′ −1f−1)∗ = (f−1)∗(f ′ −1)∗ = gg′.

So, the composition is well-defined and associative. The morphism (1c, 1d) is the identity morphism at 
(c, d) ∈ EΓ. Since (f, g) ∈ GΓ is a pair of isomorphisms in C × D , (f, g)−1 = (f−1, g−1) in GΓ. Hence GΓ is 
a groupoid. �

Now given a morphism (f, g) from (c, d) to (c′, d′) and a morphism (f1, g1) from (c1, d1) to (c′1, d′1), define 
a relation ≤Γ on GΓ as follows:

(f, g) ≤Γ (f1, g1) ⇐⇒ (c, d) ⊆ (c1, d1), (c′, d′) ⊆ (c′1, d′1),

and (f, g) = ((j(c, c1)f1)◦, (j(d, d1)g1)◦)

where j(c, c1) is the inclusion from c to c1 and h◦ stands for the epimorphic component of a morphism h in 
the normal category C .

Lemma 3.2. The relation ≤Γ is a partial order on GΓ.

Proof. Clearly ≤Γ is reflexive.
Let (f, g) ≤Γ (f1, g1) and (f1, g1) ≤Γ (f, g). Then (c, d) = (c1, d1) and (c′, d′) = (c′1, d′1). So j(c, c1) = 1c1 . 

Also since f1 is an isomorphism, (f1)◦ = f1. Hence we have

(f, g) = ((j(c, c1)f1)◦, (j(d, d1)g1)◦) = ((f1)◦, (g1)◦) = (f1, g1).

So, ≤Γ is anti-symmetric.
Let (f, g) ≤Γ (f1, g1) and (f1, g1) ≤Γ (f2, g2) where (f2, g2) is a morphism from (c2, d2) to (c′2, d′2). Then 

clearly (c, d) ⊆ (c2, d2), (c′, d′) ⊆ (c′2, d′2). Also,
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(f, g) = ((j(c, c1)f1)◦, (j(d, d1)g1)◦)

= ((j(c, c1)(j(c1, c2)f2)◦)◦, (j(d, d1)(j(d1, d2)g2)◦)◦)

= (1c((j(c, c1)j(c1, c2)f2)◦)◦, 1d((j(d, d1)j(d1, d2)g2)◦)◦) (by [23, Corollary II.4])

= (((j(c, c2)f2)◦)◦, ((j(d, d2)g2)◦)◦)

= ((j(c, c2)f2)◦, (j(d, d2)g2)◦).

So (f, g) ≤Γ (f2, g2), and thus ≤Γ is transitive. Hence ≤Γ is a partial order on GΓ. �
Observe that the partial order ≤Γ restricted to the identities of GΓ reduces to the natural partial order 

� on the biordered set EΓ, and may be written as follows.

(1c, 1d) ≤Γ (1c1 , 1d1) ⇐⇒ (c, d) ⊆ (c1, d1).

Now define restrictions and corestrictions on GΓ as follows. Take a morphism (f, g) ∈ GΓ from (c1, d1) to 
(c2, d2). If (c′1, d′1) ⊆ (c1, d1), then j(c′1, c1) is an inclusion in C from c′1 to c1, and j(d′1, d1) is an inclusion in 
D from d′1 to d1. So, (j(c′1, c1)f, j(d′1, d1)g) is a pair of monomorphisms in C × D from (c′1, d′1) to (c2, d2). 
Consider their epimorphic components, say

(f ′, g′) := ((j(c′1, c1)f)◦, (j(d′1, d1)g)◦).

Observe that f ′ and g′ are isomorphisms, and (j(d′1, d1)g)◦ = (((j(c′1, c1)f)◦)−1)∗. So, the restriction of 
(f, g) to (c′1, d′1) in GΓ is defined as the pair (f ′, g′).

Similarly, if (c′2, d′2) ⊆ (c2, d2), then j(c′2, c2) is an inclusion in C from c′2 to c2, and j(d′2, d2) is an inclusion 
in D from d′2 to d2. So, (j(c′2, c2)f−1, j(d′2, d2)g−1) is a pair of monomorphisms in C × D from (c′2, d′2) to 
(c1, d1). Consider their epimorphic components ((j(c′2, c2)f−1)◦, (j(d′2, d2)g−1)◦). These are isomorphisms 
with domain (c′2, d′2). Now take their inverses, say

(f ′′, g′′) :=
(
((j(c′2, c2)f−1)◦)−1, ((j(d′2, d2)g−1)◦)−1) .

Then, the corestriction of (f, g) to (c′2, d′2) in GΓ is defined as the pair of isomorphisms (f ′′, g′′) with codomain 
(c′2, d′2).

Theorem 3.3. (GΓ, ≤Γ) is an ordered groupoid with restrictions and corestrictions defined as above.

Proof. First, let (f, g) be a morphism in GΓ from (c1, d1) to (c2, d2), (f1, g1) a morphism from (c2, d2) to 
(c3, d3), (f ′, g′) a morphism from (c′1, d′1) to (c′2, d′2) and (f ′

1, g
′
1) a morphism from (c′2, d′2) to (c′3, d′3) such 

that (f ′, g′) ≤Γ (f, g) and (f ′
1, g

′
1) ≤Γ (f1, g1).

Then (ff1, gg1) and (f ′f ′
1, g

′g′1) are morphisms in GΓ from (c1, d1) to (c3, d3) and (c′1, d′1) to (c′3, d′3)
respectively, such that (c′1, d′1) ⊆ (c1, d1) and (c′3, d′3) ⊆ (c3, d3).

We have

(f ′f ′
1, g

′g′1) = ((j(c′1, c1)f)◦(j(c′2, c2)f1)◦, (j(d′1, d1)g)◦(j(d′2, d2)g1)◦)

= ((j(c′1, c1)ff1)◦, (j(d′1, d1)gg1)◦) (using [23, Corollary II.4]).

Hence (ff1, gg1) ≤Γ (f ′f ′
1, g

′g′1), and (OG1) is satisfied.
Now if (f, g) is a morphism in GΓ from (c1, d1) to (c2, d2) and (f ′, g′) a morphism from (c′1, d′1) to (c′2, d′2)

such that (f ′, g′) ≤Γ (f, g), then we need to show (f ′, g′)−1 ≤Γ (f, g)−1. Clearly, (c′1, d′1) ⊆ (c1, d1) and 
(c′2, d′2) ⊆ (c2, d2).
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Observe that using Proposition 2.2,

(j(c′2, c2)f−1)◦(j(c′1, c1)f)◦ = (j(c′2, c2)f−1f)◦ = (j(c′2, c2))◦ = 1c′2 ,

and

(j(c′1, c1)f)◦(j(c′2, c2)f−1)◦ = (j(c′1, c1)ff−1)◦ = (j(c′1, c1))◦ = 1c′1 .

Hence ((j(c′1, c1)f)◦)−1 = (j(c′2, c2)f−1)◦, and similarly we show that ((j(d′1, d1)g)◦)−1 = (j(d′2, d2)g−1)◦. 
So,

(f ′, g′)−1 = (f ′ −1, g′ −1)

= (((j(c′1, c1)f)◦)−1, ((j(d′1, d1)g)◦)−1)

= ((j(c′2, c2)f−1)◦, (j(d′2, d2)g−1)◦).

Hence (f ′, g′)−1 ≤Γ (f, g)−1, and (OG2) is satisfied.
Finally, if (f, g) is a morphism in GΓ from (c1, d1) to (c2, d2), and (c′1, d′1) ⊆ (c1, d1), then we define the 

restriction of (f, g) to (c′1, d′1) as ((j(c′1, c1)f)◦, (j(d′1, d1)g)◦). So ((j(c′1, c1)f)◦, (j(d′1, d1)g)◦) ≤Γ (f, g) and 
d((j(c′1, c1)f)◦, (j(d′1, d1)g)◦) = (c′1, d′1), and (OG3) is satisfied. Similarly, we can verify (OG3*).

Hence (GΓ, ≤Γ) is an ordered groupoid. �
Now, since EΓ is a regular biordered set, we can build an ordered groupoid G (EΓ) of the E-chains of EΓ. 

But to that end, we need to discuss how we can compose two cones in a normal category.
Recall that for a cone γ in the category C and an epimorphism f : cγ → d, the map γ ∗ f : a �→ γ(a)f

from vC to C is a cone with apex d. Hence, given two cones γ and σ, we can compose them as follows:

γ · σ = γ ∗ (σ(cγ))◦ (5)

where (σ(cγ))◦ is the epimorphic component of the morphism σ(cγ).
Now, we define a partial order on the set G (EΓ) of the E-chains of EΓ. First, for an E-chain c =

((c1, d1), (c2, d2), . . . , (cn, dn)) and for (h, k) ∈ EΓ with (h, k) � (c1, d1), let

(h, k) · c := ((h0, k0), (h1, k1), (h2, k2), . . . , (hn, kn))

where (h0, k0) := (h, k) and for i = 1, . . . , n, the pairs (hi, ki) are such that

γ(hi, ki) := γ(ci, di)γ(hi−1, ki−1)γ(ci, di) and (6a)

δ(hi, ki) := δ(ci, di)δ(hi−1, ki−1)δ(ci, di), (6b)

and the cones in the right hand sides of (6a) and (6b) are composed as in (5).
Then for E-chains c as above and c′ = ((c′1, d′1), (c′2, d′2), . . . , (c′m, d′m)), define

c ≤E c′ ⇐⇒ (c1, d1) ⊆ (c′1, d′1) and c = (c1, d1) · c′.

Now, it may be verified that (G (EΓ), ≤E) forms an ordered groupoid with restriction (h, k)�c = (h, k) · c.
Further, we define an evaluation map εΓ : G (EΓ) → GΓ as follows. In the sequel, for convenience, we often 

denote the idempotent cones γ(ci, di) and δ(ci, di) by γi and δi, respectively. The object function of the 
evaluation functor is vεΓ = 1EΓ , and for an arbitrary E-chain c = ((c1, d1), (c2, d2), . . . , (cn, dn)) in G (EΓ), 
we let
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εΓ(c) := ((γ1γ2 . . . γn)(c1), (δ1δ2 . . . δn)(d1)).

Before proceeding, we need to verify the following lemma.

Lemma 3.4. If c = ((c1, d1), (c2, d2), . . . , (cn, dn)) ∈ G (EΓ), then εΓ(c) ∈ GΓ.

Proof. First, observe that since γi and δi are idempotent cones, we have γi(ci) = 1ci and δi(di) = 1di
. Since 

c is an E-chain, either (ci−1, di−1) L (ci, di) or (ci−1, di−1) R (ci, di). If (ci−1, di−1) L (ci, di), then by (3), 
ci−1 = ci and so γi(ci−1) = γi(ci) = 1ci . Otherwise, if (ci−1, di−1) R (ci, di), then by [23, Proposition III.7], 
γi(ci−1) is an isomorphism. In either case, we see that γi(ci−1) is an isomorphism. Similarly, we can verify 
that δi(di−1) is an isomorphism. So,

(γ1γ2 . . . γn)(c1) = γ1(c1) ∗ ((γ2 . . . γn)(c1))◦ (by cone multiplication: see (5))

= γ1(c1) ∗ (γ2(c1) ∗ (γ3 . . . γn)(c2))◦ (- -"- -)

= γ1(c1)(γ2(c1))◦ ∗ ((γ3 . . . γn)(c2))◦ (using Proposition 2.2 )

= γ1(c1)γ2(c1) ∗ ((γ3 . . . γn)(c2))◦ (since γ2(c1) is an isomorphism)

= γ1(c1) γ2(c1) γ3(c2) . . . γn(cn−1) (repeated use of previous arguments)

= γ2(c1) γ3(c2) . . . γn(cn−1) (since γ1(c1) = 1c1).

Since each γi(ci−1) is an isomorphism, we conclude that the morphism (γ1γ2 . . . γn)(c1) is an isomorphism 
in C . Similarly

(δ1δ2 . . . δn)(d1) = δ2(d1) . . . δn(dn−1),

and so (δ1δ2 . . . δn)(d1) is an isomorphism in D .
Now to show that εΓ(c) ∈ GΓ, we need to show that

(((γ1γ2 . . . γn)(c1))−1)∗ = (δ1δ2 . . . δn)(d1).

But since ((fg)−1)∗ = (f−1)∗(g−1)∗, γ(c1, d1)(c1) = 1c1 and δ(c1, d1)(d1) = 1d1 , it suffices to show that

((γn(cn−1))−1)∗ = δn(dn−1) for n = 2, . . . , n.

Using [23, Page 94, Equation (25) version of Lemma IV.18], we have

(γn−1(cn))∗ = δn(dn−1).

So it remains to verify that

γn−1(cn) = (γn(cn−1))−1.

Observe that since c is an E-chain, γn−1 and γn are idempotent cones such that γn−1 R γn or γn−1 L γn. 
If γn−1 L γn, then cn−1 = cn, so that

γn−1(cn) = 1cn = (γn(cn−1))−1.

Otherwise, if γn−1 R γn, then dn−1 = dn and

γn−1γn = γn and γnγn−1 = γn−1.
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That is,

γn−1γn(cn−1) = γn and γnγn−1(cn) = γn−1.

Equating the first equation at the apex cn and the second equation at the apex cn−1, we get

γn−1(cn)γn(cn−1) = 1cn and γn(cn−1)γn−1(cn) = 1cn−1 .

That is, γn−1(cn) = (γn(cn−1))−1; hence the lemma. �
Proposition 3.5. εΓ : G (EΓ) → GΓ is an evaluation functor.

Proof. To prove the proposition, we need to show that εΓ is a v-isomorphism.
First, we show that εΓ is a functor. Suppose c, c′ ∈ G (EΓ) are such that c.c′ exists. Then

εΓ(c)εΓ(c′) =((γ1γ2 . . . γn)(c1), (δ1δ2 . . . δn)(d1))((γ′
1γ

′
2 . . . γ

′
n)(c′1), (δ′1δ′2 . . . δ′n)(d′1))

=(γ1(c1) γ2(c1) . . . γn(cn−1) γ′
1(c′1) γ′

2(c′1) . . . γ′
n(c′n−1),

δ1(d1)δ2(d1) . . . δn(dn−1) δ′1(d′1)δ′2(d′1) . . . δ′n(d′n−1))

=(γ1(c1) γ2(c1) . . . γn(cn−1) γ′
1(cn) γ′

2(c′1) . . . γ′
n(c′n−1),

δ1(d1)δ2(d1) . . . δn(dn−1) δ′1(dn)δ′2(d′1) . . . δ′n(d′n−1))

=((γ1γ2 . . . γnγ
′
1γ

′
2 . . . γ

′
n)(c1), (δ1δ2 . . . δnδ′1δ′2 . . . δ′n)(d1))

=εΓ(c.c′).

Now, to show that εΓ is order preserving, it suffices to show that for an arbitrary c = ((c1, d1), (c2, d2), . . . ,
(cn, dn)) in G (EΓ) and (h, k) � (c1, d1),

εΓ((h, k)�c) = (h, k)�εΓ(c).

In the sequel, we shall denote the idempotent cones γ(h, k), γ(hi, ki) and δ(hi, ki) by θ, θi and ηi respectively. 
So according to our notations, θi = γiθi−1γi and ηi = δiηi−1δi.

First observe that since γi L γi+1 or γi R γi+1, either γiγi+1 = γi or γi+1γi = γi. So,

γ1γ2 . . . γi−1γiγi−1 . . . γ2γ1 = γ1 for all i = 1, · · · , n.

Similarly δ1δ2 . . . δi−1δiδi−1 . . . δ2δ1 = δ1.
Also since (h, k) � (c1, d1), we have θγ1 = γ1θ = θ. Now,

θθ1θ2 . . . θn = θ(γ1θγ1)(γ2γ1θγ1γ2) . . . (γnγn−1 . . . γ1θγ1γ2 . . . γn)

= θ(γ1)θ(γ1γ2γ1)θ(γ1 . . . γiγi−1 . . . γ1)θ(γ1 . . . γnγn−1 . . . γ1)θ(γ1γ2 . . . γn)

= θ(γ1)θ(γ1)θ(γ1)θ(γ1)θ(γ1γ2 . . . γn)

= θγ1γ2 . . . γn.

Similarly ηη1η2 . . . ηn = ηδ1δ2 . . . δn.
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So,

εΓ((h, k)�c) =εΓ(c((h, k), (h1, k1), (h2, k2), . . . , (hn, kn)))

=(θθ1θ2 . . . θn(h), ηη1η2 . . . ηn(k))

=(θγ1γ2 . . . γn(h), ηδ1δ2 . . . δn(k))

=(θ(h)((γ1γ2 . . . γn)(h))◦, η(k)((δ1δ2 . . . δn)(k))◦) (by cone multiplication: see (5))

=(1h.((γ1γ2 . . . γn)(h))◦, 1k((δ1δ2 . . . δn)(k))◦)

=((j(h, c1)(γ1γ2 . . . γn)(c1))◦, (j(k, d1)(δ1δ2 . . . δn)(d1))◦) (as (h, k) ⊆ (c1, d1))

=(h, k)�((γ1γ2 . . . γn)(c1), (δ1δ2 . . . δn)(d1))

=(h, k)�εΓ(c).

Hence εΓ : G (EΓ) → GΓ is an evaluation functor. �
Remark 3.1. Observe that in the proof of Theorem 3.3 that (GΓ, ≤Γ) is an ordered groupoid, we have not 
used any ‘cross-connection’ properties. Hence using the same proof, one could show that the isomorphisms in 
the normal categories C and D , denoted by GC and GD respectively, form ordered groupoids. The one-sided 
subgroupoids of GΓ, i.e., the groupoids GΓ|C and GΓ|D (which are subgroupoids of GC and GD respectively) 
obtained by restricting GΓ to the categories C and D respectively also form ordered groupoids. Observe 
that restricting all the above described groupoids to the image εΓ(G (EΓ)) of the evaluation functor εΓ also 
give rise to ordered groupoids. Hence given a cross-connection Γ, we can associate with it several interesting 
ordered groupoids, which are all subgroupoids of GΓ.

3.3. The inductive groupoid GΓ

Before we proceed to prove that (GΓ, εΓ) is an inductive groupoid, we need the following important lemma 
concerning the ordered groupoid (GΓ, ≤Γ) which need not necessarily hold in its ordered subgroupoids. It 
describes the relationship between the retractions in the normal categories and the restrictions in the 
inductive groupoid.

Lemma 3.6. Let (f, g) be a morphism in GΓ from (c, d) to (c′, d′) and let (c1, d1) ∈ EΓ be such that (c1, d1) ⊆
(c, d). If (f1, g1) is the restriction (c1, d1)�(f, g) with codomain (c′1, d′1), then

(f, g)(γ′
1(c′), δ′1(d′)) = (γ1(c), δ1(d))(f1, g1).

Proof. First, recall that, using [23, Proposition IV.24],

(j(d′1, d′))∗ = γ′
1(c′), (j(c′1, c′))∗ = δ′1(d′), (j(d1, d))∗ = γ1(c) and (j(c1, c))∗ = δ1(d).

Also, all the morphisms on the right hand side are retractions.
Now, since g1 = (j(d1, d)g)◦, we have

g1j(d′1, d′) = (j(d1, d)g)◦j(d′1, d′) =⇒ g1j(d′1, d′) = j(d1, d)g.

Taking transposes we get

(j(d′1, d′))∗g∗1 = g∗(j(d1, d))∗ =⇒ γ′
1(c′)(f1)−1 = f−1γ1(c) =⇒ fγ′

1(c′) = γ1(c)f1.

Similarly we can prove that gδ′1(d′) = δ1(d)g1. Hence the lemma. �
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ε(f1,f1f2)

f1f2

e1

ε(e1)�x

ε(e1,e1e2)
e1e2

ε(e1e2)�x

Fig. 2. The axiom (IG1) of an inductive groupoid corresponds to the commutativity of the solid arrows (which represent the 
isomorphisms). The dashed line represents an arbitrary morphism in the inductive groupoid and the dotted lines correspond to 
the natural partial order � between the elements of the biordered set.

Theorem 3.7. (GΓ, εΓ) is an inductive groupoid.

Proof. We need to verify that (GΓ, εΓ) satisfies the axioms of Definition 2.2. First, we need to verify (IG1) 
of Definition 2.2. To this end, consider an ordered groupoid G and an evaluation functor ε : G (E) → G . Let 
x ∈ G and for i = 1, 2, let ei, fi ∈ E be such that e1 �r e2, ε(ei) ≤ d(x) and ε(fi) = r(ε(ei)�x). Then we 
need to verify that f1 �r f2, and

ε(e1, e1e2)(ε(e1e2)�x) = (ε(e1)�x)ε(f1, f1f2).

The above condition can be illustrated by the commutativity of the solid arrows in Fig. 2. Observe that 
Lemma 3.6 concerns with the commutativity of the square consisting of the elements e, f , f1f2 and e1e2 in 
Fig. 2.

First, let (f, g) be a morphism in GΓ from (c, d) to (c′, d′) such that (ci, di) ⊆ (c, d) for i = 1, 2. Then the 
codomain r((ci, di)�(f, g)) is (c′i, d′i) = im(j(ci, c)f, j(di, d)g).

By Remark 3.1, the groupoid GΓ|D is an ordered groupoid; so if d1 ⊆ d2, then clearly d′1 ⊆ d′2. Also, by 
the partial binary composition of the biordered set,

(c1, d1)(c2, d2) = (im γ(c2, d2)(c1), d1), denoted by (c3, d3) in the sequel.

As the reader sees, here we relabel d1 as d3. This is done for the sake of notational convenience as we want 
the indices of γis and δis to match the indices of (ci, di) in the subsequent proof. Similarly,

(c′1, d′1)(c′2, d′2) = (im γ(c′2, d′2)(c′1), d′1) =: (c′3, d′3).

Now,

εΓ((c1, d1), (c3, d3))(εΓ((c3, d3)�(f, g))
= (γ1γ3(c1), δ1δ3(d1))((c3, d3)�(f, g))
= (γ γ (c ), δ δ (d ))((j(c , c)f)◦, (j(d , d)g)◦)
1 3 1 1 3 1 3 3
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= ((γ3(c1))◦(j(c3, c)f)◦, (δ3(d1))◦(j(d3, d)g)◦)

= (γ3(c1)(j(c3, c)f)◦, (1d1)(j(d3, d)g)◦)

= (γ3(c1)(j(c3, c)f)◦, (j(d3, d)g)◦).

Also,

(εΓ((c1, d1))�(f, g))εΓ((c′1, d′1), (c′3, d′3))

= ((c1, d1)�(f, g))(γ′
1γ

′
3(c′1), δ′1δ′3(d′1))

= ((j(c1, c)f)◦, (j(d1, d)g)◦)(γ′
1γ

′
3(c′1), δ′1δ′3(d′1))

= ((j(c1, c)f)◦(γ′
3(c′1))◦, (j(d1, d)g)◦(δ′3(d′1))◦)

= ((j(c1, c)f)◦γ′
3(c′1), (j(d1, d)g)◦(1d′

1
)◦)

= ((j(c1, c)f)◦j(c′1, c′)γ′
3(c′), (j(d1, d)g)◦1d′

1
)

= (j(c1, c)fγ′
3(c′), (j(d1, d)g)◦)

= (j(c1, c)γ3(c)(j(c3, c)f)◦, (j(d1, d)g)◦) (By Lemma 3.6)

= (γ3(c1)(j(c3, c)f)◦, (j(d1, d)g)◦).

Since d1 = d3, the right hand sides coincide and thus we have verified (IG1). Similarly, we can verify its 
dual.

Now we need to verify (IG2), that is, every singular E-square is εΓ-commutative. Let 
[ (h1,k1) (h1,k1)(c,d)

(h2,k2) (h2,k2)(c,d)
]

be a column-singular E-square such that k1, k2 ⊆ d and h1 = h2. Then,

γθ1 = θ1, γθ2 = θ2, θ1θ2 = θ1, θ2θ1 = θ2; δη1 = η1, δη2 = η2, η1η2 = η1 and η2η1 = η2.

So,

εΓ((h1, k1), (h2, k2))εΓ((h2, k2), (h2, k2)(c, d))

= (θ1θ2(h1), η1η2(k1))(θ2θ2γ(h2), η2η2δ(k2))

= (θ1θ2θ2θ2γ(h1), η1η2η2η2δ(k1))

= (θ1γ(h1), η1δ(k1)).

Also,

εΓ((h1, k1), (h1, k1)(c, d))εΓ((h1, k1)(c, d), (h2, k2)(c, d))

= (θ1θ1γ(h1), η1η1δ(k1))(θ1γθ2γ(h1), η1δη2δ(k1))

= (θ1θ1γθ1γθ2γ(h1), η1η1δη1δη2δ(k1))

= (θ1γ(h1), η1δ(k1)).

So, the column-singular E-square 
[ (h1,k1) (h1,k1)(c,d)

(h2,k2) (h2,k2)(c,d)
]

is εΓ-commutative. Dually, we can show that every 
row-singular E-square is also εΓ-commutative. So (IG2) also holds.

Hence (GΓ, εΓ) is an inductive groupoid. �
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3.4. The functor I : CC → IG

We have seen that given a cross-connection (D , C ; Γ), it has a corresponding inductive groupoid (GΓ, εΓ). 
Now, we extend this correspondence to morphisms and also show that it is, in fact, functorial.

Given two cross-connections (D , C ; Γ) and (D ′, C ′; Γ′), a morphism of cross-connections m : Γ → Γ′ is a 
pair m = (Fm, Gm) of inclusion preserving functors Fm : C → C ′ and Gm : D → D ′ satisfying the axioms 
of Definition 2.6.

Clearly m is a functor from C × D to C ′ × D ′ and GΓ ⊆ C × D . So m|GΓ : GΓ → GΓ′ is also a functor.

Proposition 3.8. m|GΓ is an inductive functor from (GΓ, εΓ) to (GΓ′ , εΓ′).

Proof. First, by [23, Lemma V.4], m|GΓ is a regular bimorphism from EΓ to EΓ′ .
Recall from [23, Section V.2] that any inclusion preserving functor between two normal categories pre-

serves normal factorization and in particular it preserves epimorphic components. Now, since Fm and Gm

are inclusion preserving,

m|GΓ((c1, d1)�(f, g)) = m|GΓ((j(c1, c)f)◦, (j(d1, d)g)◦)

= (Fm((j(c1, c)f)◦), Gm((j(d1, d)g)◦))

= ((j(Fm(c1), Fm(c))Fm(f))◦, (j(Gm(d1), Gm(d))Gm(g))◦)

= (Fm(c1), Gm(d1))�(Fm(f), Gm(g))

= m|GΓ((c1, d1))�m|GΓ((f, g)).

So, m|GΓ is order preserving.
Given ((c1, d1), (c2, d2), . . . , (cn, dn)) ∈ G (E), as earlier, we denote the idempotent cones γ(ci, di) and 

δ(ci, di) by γi and δi, respectively, and the cones γ′(Fm(ci), Gm(di)) and δ′(Fm(ci), Gm(di) by γ′
i and δ′i, 

respectively. Then,

G (vm|GΓ)εΓ′((c1, d1), (c2, d2), . . . , (cn, dn))

= εΓ′((Fm(c1), Gm(d1)), (Fm(c2), Gm(d2)), . . . , (Fm(cn), Gm(dn)))

= (γ′
1γ

′
2 . . . γ

′
n(Fm(c1)), δ′1δ′2 . . . δ′n(Gm(d1)))

= (Fm(γ1γ2 . . . γn(c1)), Gm(δ1δ2 . . . δn(d1))) (Using the axiom (M1))

= m|GΓ(γ1γ2 . . . γn(c1), δ1δ2 . . . δn(d1))

= εΓm|GΓ((c1, d1), (c2, d2), . . . , (cn, dn)).

Hence the following diagram commutes:

G (E)
G (vm|GΓ )

εΓ

G (E′)

εΓ′

GΓ
m|GΓ

GΓ′

Thus m|GΓ is an inductive functor. �
Verification of the next result is routine.
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Theorem 3.9. The assignments

(D ,C ; Γ) �→ (GΓ, εΓ) m �→ m|GΓ

is a functor I : CC → IG.

4. Cross-connection from an inductive groupoid

Having constructed the inductive groupoid of a cross-connection, now we attempt the converse. Given the 
inductive groupoid (G , ε) with biordered set E having preorders �� and �r, we construct a cross-connection 
(RG, LG; ΓG). Unlike the previous case where it sufficed to identify the category sitting inside the cross-
connection, here we have to ‘split’ the inductive groupoid and then ‘extend’ each part to the required normal 
category.

4.1. The normal category LG

We begin with building the ‘left’ normal category LG associated to the inductive groupoid G . The 
crucial property of a normal category that will guide us in this construction is that every morphism has a 
normal factorization into a retraction, an isomorphism and an inclusion. So, we shall build three separate 
categories: one category PL ‘responsible’ for inclusions, the other one GL ‘responsible’ for isomorphisms, 
and the last one QL ‘responsible’ for retractions. Then we combine these categories to build our required 
category by extending the composition of the isomorphisms (which is inherited from the given inductive 
groupoid).

The major obstacle in this procedure arises from the fact that normal factorization of a morphism is not 
unique. But fortunately, the epimorphic component (retraction + isomorphism) of a morphism is indeed 
unique. Exploiting this fact, we first build an intermediate category EL from the categories QL and GL, and 
then finally realize LG as a suitable product of EL and PL.

Given the inductive groupoid G with regular biordered set E, let the object set vLG be E/L , where 
L =�� ∩ (��)−1. This gives a partially ordered set E/L with respect to the order ≤L :=�� /L . In fact, 
E/L forms a regular partially ordered set, in the sense of Grillet [14]. The proof of this statement may be 
found in [21]. Given e ∈ E, in the sequel, ←−e shall denote the canonical image of e in E/L . This set E/L

shall act as the object set of all our three categories: PL, GL and QL. That is, vPL = vGL = vQL := E/L .
Let us begin by completing our first category PL. Recall that a partially ordered set corresponds naturally 

to a strict preorder category. In fact, our first required category PL is the preorder category associated with 
the partially ordered set E/L . Hence, in PL, we introduce the formal symbol j = jL (e, f) for a morphism 
from ←−e to 

←−
f whenever ←−e ≤L

←−
f . So, given two morphisms jL (e, f) and jL (g, h) in PL, they are equal 

if and only if e L g and f L h. Given jL (e, f) and jL (f, g), we compose them using the composition 
induced by the partial binary composition of the biordered set E as follows:

jL (e, f) jL (f, g) := jL (e, g).

Observe that since e �� f , we have e f = e in E. Now, the verification of the following proposition is routine.

Proposition 4.1. PL is a strict preorder category with the object set vPL := E/L and the morphisms in 
PL as defined above.

Now, we move onto our second required category, namely GL which shall be responsible for the isomor-
phisms in LG. Recall from Definition 2.2 that an inductive groupoid G comes equipped with an evaluation 
functor ε, which helps one to ‘evaluate’ E-chains of the ordered groupoid G (E) in the groupoid G . Also, 



P.A. Azeef Muhammed, M.V. Volkov / Journal of Pure and Applied Algebra 226 (2022) 106940 21
recall that the object set vGL := E/L . Then, to define morphisms in the category GL, given any two 
morphisms α, β in the inductive groupoid G , we first define a relation ∼L as follows:

α ∼L β ⇐⇒ d(α) L d(β), r(α) L r(β) and α ε(r(α), r(β)) = ε(d(α),d(β)) β. (7)

Lemma 4.2. ∼L is an equivalence relation.

Proof. Clearly ∼L is reflexive.
Now if α ∼L β, then

α ε(r(α), r(β)) = ε(d(α),d(β)) β. (8)

Observe that

ε(r(α), r(β))ε(r(β), r(α)) = 1r(α) and ε(d(β),d(α))ε(d(α),d(β)) = 1d(β).

Hence multiplying the equation (8) by ε(r(β), r(α)) on the right and by ε(d(β), d(α)) on the left, we have

ε(d(β),d(α)) α = β ε(r(β), r(α)).

That is, β ∼L α and so the relation ∼L is symmetric.
If α ∼L β and β ∼L γ, then

α ε(r(α), r(β)) = ε(d(α),d(β)) β and β ε(r(β), r(γ)) = ε(d(β),d(γ)) γ. (9)

Observe that since r(α) L r(β) L r(γ) and d(α) L d(β) L d(γ), we have

ε(r(α), r(β))ε(r(β), r(γ)) = ε(r(α), r(γ)) and ε(d(α),d(β))ε(d(β),d(γ)) = ε(d(α),d(γ)).

So,

α ε(r(α), r(γ)) =α ε(r(α), r(β)) ε(r(β), r(γ))

=ε(d(α),d(β)) β ε(r(β), r(γ))

=ε(d(α),d(β))ε(d(β),d(γ)) γ

=ε(d(α),d(γ)) γ.

So α ∼L γ and the relation ∼L is transitive. Hence the lemma. �
Remark 4.1. Observe that the relation ∼L reduces to the L -relation on the identities of G . Informally 
speaking, the relation (7) may be seen as a ‘left-sided’ version of the crucial p-relation of [22, Section 4], 
which is defined later in this article: see equation (11).

We shall require the following observation in the sequel.

Proposition 4.3. Let (D , C ; Γ) be a cross-connection with its inductive groupoid GΓ. For (f1, g1), (f2, g2) ∈
GΓ,

(f1, g1) ∼L (f2, g2) ⇐⇒ f1 = f2.
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Proof. Suppose that (fi, gi) : (ci, di) → (c′i, d′i) for i = 1, 2. Let (f1, g1) ∼L (f2, g2) so that d(f1, g1) =
(c1, d1) L (c2, d2) = d(f2, g2). Then, by (3), we have c1 = c2. Similarly we have c′1 = c′2. Further the last 
condition in (7) implies that:

(f1, g1) ε((c′1, d′1), (c′2, d′2)) = ε((c1, d1), (c2, d2)) (f2, g2)

⇐⇒ (f1, g1) (γ′
1γ

′
2(c′1), δ′1δ′2(d′1)) = (γ1γ2(c1), δ1δ2(d1)) (f2, g2)

⇐⇒ (f1γ
′
2(c′1), g1δ

′
2(d′1)) = (γ2(c1)f2, δ2(d1)g2).

Since c1 = c2 and c′1 = c′2, we have γ′
2(c′1) = 1c′1 and γ2(c1) = 1c2 . Thus, equating the first components gives 

us f1 = f2.
Conversely, suppose that f1 = f2. Since c1 = c2 and c′1 = c′2, by (3), we have that d(f1, g1) L d(f2, g2)

and r(f1, g1) L r(f2, g2). Also, since γ′
2(c′1) = 1c′1 and γ2(c1) = 1c2 , we have that f1γ

′
2(c′1) = γ2(c1)f2. 

Now observe that in the inductive groupoid GΓ, the morphisms g1δ
′
2(d′1) and δ2(d1)g2 are transposes of 

(f1γ
′
2(c′1))−1 and (γ2(c1)f2)−1, respectively. But since we know that (f1γ

′
2(c′1))−1 = (γ2(c1)f2)−1, and also 

that both the morphisms g1δ
′
2(d′1) and δ2(d1)g2 are from d1 to d′2, by the uniqueness of transposes (for a 

given domain and codomain), we have that g1δ
′
2(d′1) = δ2(d1)g2. Hence we have (f1, g1) ∼L (f2, g2). �

Given a morphism α in G from e to f , we shall denote the ∼L-class of G containing the morphism α by 
←−α = ←−α (e, f). We shall define ←−α as a morphism in GL from ←−e to 

←−
f . Further, for ←−α , 

←−
β ∈ GL such that 

r(α) L d(β), we define a composition in GL as

←−α←−
β :=

←−−−−−−−−−−−−
α ε(r(α),d(β)) β.

Proposition 4.4. GL is a groupoid.

Proof. First, we verify that the composition is well-defined. Suppose α1 ∼L α2 and β1 ∼L β2 are such that 
←−α1

←−
β1 and ←−α2

←−
β2 exist. Let γ1 := α1 ε(r(α1), d(β1)) β1 and γ2 := α2 ε(r(α2), d(β2)) β2; so we need to show 

that γ1 ∼L γ2.
Since d(α1) L d(α2), we have that d(γ1) L d(γ2) and since r(β1) L r(β2), we have r(γ1) L r(γ2). 

Also since r(α1) L r(α2) L d(β1) L d(β2), we get

ε(r(α1),d(β1)) = ε(r(α1), r(α2)) ε(r(α2),d(β1)) and (10)

ε(r(α2),d(β2)) = ε(r(α2),d(β1)) ε(d(β1),d(β2)).

So,

γ1 ε(r(γ1), r(γ2))

= α1 ε(r(α1),d(β1)) β1 ε(r(β1), r(β2)) (by definition of γ1)

= α1 ε(r(α1), r(α2)) ε(r(α2),d(β1)) β1 ε(r(β1), r(β2)) (using (10))

= ε(d(α1),d(α2)) α2 ε(r(α2),d(β1)) ε(d(β1),d(β2)) β2 (since α1 ∼L α2 and β1 ∼L β2)

= ε(d(α1),d(α2)) α2 ε(r(α2),d(β2)) β2 (using (10))

= ε(d(γ1),d(γ2)) γ2 (by definition of γ2).

Hence γ1 ∼L γ2 and so the composition is well-defined. The associativity of the composition follows from 
the associativity of the composition in G .
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Now given ←−α ∈ GL from ←−e to 
←−
f , since

←−1e←−α =
←−−−−−−−
1e ε(e, e) α = ←−α and ←−α←−1f =

←−−−−−−−−
α ε(f, f) 1f = ←−α ,

←−1e is the identity morphism at the apex ←−e . Also,

←−−
α−1←−α =

←−−−−−−−−
α−1 ε(e, e) α = ←−1f and ←−α

←−−
α−1 =

←−−−−−−−−−
α ε(f, f) α−1 = ←−1e.

So (←−α )−1 =
←−−
α−1 and hence GL is a groupoid. �

Remark 4.2. It can be shown that, in fact, GL is an ordered groupoid with respect to the order induced 
from the inductive groupoid.

Having built our required two categories, we move onto our third category QL. Recall again that vQL :=
E/L . Now, if f �� e, for each u in the biordered set E such that u � e and u L f , we define a morphism 
q = qL (e, u) in QL from ←−e to ←−u =

←−
f . Then two such morphisms qL (e, u) and qL (g, v) are equal if and 

only if e L g and v = gu in E. In that case, since u � e L g, observe that gu is a basic product. In 
particular, if e L g, then g = ge and so qL (e, e) = qL (g, g).

Further, if we have two morphisms qL (e, u) and qL (f, v) in QL such that u L f , then we define a 
composition on QL as

qL (e, u) qL (f, v) := qL (e, uv).

Since v �� u, so uv is a basic product in E and by axiom (B2), uv L v. Since v �� u �� u, using axiom 
(B4), we have uv = u(uv). That implies uv �r u. Combining this with the fact that uv �� u, we have 
uv � u. Further, since u � e, by transitivity, we have uv � e. Hence qL (e, uv) is a morphism in QL and 
the above composition is well-defined.

Proposition 4.5. QL is a category.

Proof. We need to verify associativity and identity. If qL (e, u), qL (f, v), and qL (g, w) are composable 
morphisms in QL, then observe that w �� v �� u. Then,

(qL (e, u) qL (f, v)) qL (g, w) = qL (e, uv) qL (g, w)

= qL (e, (uv)w)

= qL (e, u(vw)) (Using the dual of [22, Proposition 2.3])

= qL (e, u) qL (f, vw)

= qL (e, u) (qL (f, v) qL (g, w)).

So it is associative. Also, since

qL (e, u)qL (u, u) = qL (e, u) and qL (e, e)qL (e, u) = qL (e, u),

the identity morphism at ←−e in QL is qL (e, e). Hence QL is a category. �
We have successfully built all our three ingredient categories, namely PL, GL, and QL. Now we need to 

synthesize their composition to construct our required category LG from the inductive groupoid composi-
tion. As mentioned earlier, in this process, we shall rely heavily on the uniqueness of epimorphic components 
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of morphisms in a normal category. To that end, we first build the category EL (that would be responsible 
for epimorphisms) using the categories QL and GL. For this, we need the following concept of a quiver.

Definition 4.1. A quiver K consists of a set of objects (denoted as vK ) together with a set of morphisms 
(denoted by K itself) and two functions d, r : K ⇒ vK giving the domain and codomain of each morphism.

Now given categories QL and GL, consider an intermediary quiver E with object set vE := E/L and 
morphisms as follows:

E := {(q,←−α ) ∈ QL × GL : r(q) = d(←−α )}.

Then, consider the following relation ∼E on the morphisms of the quiver E : for any ξ1 := (q1(e, u), ←−α )
and ξ2 := (q2(f, v), 

←−
β ),

ξ1 ∼E ξ2 ⇐⇒ e L f, u R v and ←−α =
←−−−−
ε(u, v)

←−
β .

The following lemma can be easily verified.

Lemma 4.6. ∼E is an equivalence relation.

Now, we define the category EL whose object set is vEL := E/L and whose morphisms are ∼E -classes 
of the quiver E . We take the liberty of referring to EL as a category even though we have not yet defined 
any composition in EL; if fact, heading to such a definition, we first need to specify a ‘good’ representative 
in each ∼E -class.

It is easy to see that for an arbitrary morphism (q, ←−α ) = (qL (e, u), 
←−−−−
α(f, g)) ∈ E , the morphism θ :=

ε(u, f) α from the inductive groupoid G satisfies d(θ) = u and ←−α =
←−
θ . From the latter property, we 

conclude that (q, 
←−
θ ) lies in the ∼E -class of (q, ←−α ). This allows us to represent each ∼E -class by a morphism 

of the form (qL (e, u), 
←−−−−
α(u, f)) which we refer to as a right epi in the category EL. In the sequel, unless 

otherwise stated, a morphism in the category EL shall always be represented by its right epi. For brevity, 
whenever there is no scope of confusion, we shall denote the above right epi by just [e, α〉.

Observe that a right epi [e, α〉 represents the following ∼E -class of morphisms in the quiver E :

[e, α〉∼E = { (qL (f, v),
←−
θ ) ∈ E : f L e, v R d(α) and

←−
θ =

←−−−−−−−−
ε(v,d(α)) α }.

We allow ourselves the notation [e, α〉 ∈ EL, meaning, of course, the ∼E -class just shown.
So, given two right epis [e, α〉 and [f, β〉 in the category EL, they are ∼E related if and only if e L f , 

d(α) R d(β) and ←−α =
←−−−−−−−−−−−
ε(d(α),d(β)) β. So, if [e, α〉, [f, β〉 are such that e L d(α) and f L d(β), then 

[e, α〉 = [f, β〉 if and only if ←−α =
←−
β . Also [e, 1u〉 = [f, 1v〉 if and only if e L f and v = fu. In particular, if 

e L f , we have [e, 1e〉 = [f, 1f 〉.
As in [22, Section 4], consider the following relation p on G : for α, β ∈ G ,

α p β ⇐⇒ d(α) R d(β), r(α) L r(β) and α ε(r(α), r(β)) = ε(d(α),d(β)) β. (11)

In contrast to (7), the definition of p is ‘bilateral’; in [22, Section 4], it is verified that p is an equivalence 
relation. As in [22], we shall denote the p-class of G containing α by α.

The following lemma which is crucial in the further considerations gives the relationship between the 
morphisms of the required normal category LG and the given inductive groupoid G .

Lemma 4.7. Let [e, α〉, [f, β〉 be right epis in the category EL. Then [e, α〉 = [f, β〉 if and only if e L f and 
α = β.
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Proof. Let [e, α〉 = [f, β〉, then e L f , d(α) R d(β) and ←−α =
←−−−−−−−−−−−
ε(d(α),d(β)) β. That is α ε(r(α), r(β)) =

ε(d(α), d(β)) β and r(α) L r(β). So α = β.
Conversely, if e L f and α = β, then d(α) R d(β), r(α) L r(β) and α ε(r(α), r(β)) = ε(d(α), d(β)) β. 

Now since 
←−−−−−−−−−
ε(r(α), r(β)) = 1r(α), we have ←−α =

←−−−−−−−−−−−
ε(d(α),d(β)) β. So, [e, α〉 = [f, β〉. Hence the lemma. �

Now we proceed to define a partial composition in the category EL as follows. Let ε1 = [e1, α〉 and 
ε2 = [e2, β〉 be right epis in the category EL such that α ∈ G (u, f1) and β ∈ G (v, f2). If 

←−
f1 ≤L

←−e2 , then

ε1ε2 := [e1, θ〉 (12)

where for h ∈ S (r(α), d(β)) = S (f1, v),

θ := (α ◦ β)h = (α�f1h) ε(f1h, h) ε(h, hv) (hv�β).

Observe that the sandwich set S (f1, v) is well-defined as it depends only on the L -class of f1 and R-class 
of v. To verify that the composition is well-defined, we need to prove the following lemmas. The first lemma 
shows that the composition in (12) is independent of the representing element of the morphism [e, α〉 in EL.

Lemma 4.8. Let [e1, α〉 = [e′1, α′〉 and [e2, β〉 = [e′2, β′〉 be morphisms in the category EL such that r(←−α ) ≤L
←−e2

and r(
←−
α′) ≤L

←−
e′2. Then for any fixed h ∈ S (r(α), d(β)) = S (r(α′), d(β′)),

[e1, (α ◦ β)h〉 = [e′1, (α′ ◦ β′)h〉.

Proof. Clearly e1 L e′1 and using [22, Lemma 4.7], we have (α ◦ β)h = (α′ ◦ β′)h. Hence the lemma follows 
from Lemma 4.7. �

We also need to show that (12) is independent of the choice of the sandwich element in the sandwich set.

Lemma 4.9. Let [e1, α〉, [e2, β〉 ∈ EL such that r(←−α ) ≤L
←−e2 . For h, h′ ∈ S (r(α), d(β)),

[e1, (α ◦ β)h〉 = [e1, (α ◦ β)h′〉.

Proof. The lemma follows from [22, Lemma 4.8] and Lemma 4.7. �
The partial composition defined in the category EL may be illustrated using Fig. 3 in the inductive 

groupoid G . The solid arrows correspond to the relevant morphisms in the category EL.

Remark 4.3. Observe that the partial composition of [e1, α〉 and [e2, β〉 in the category EL does not depend 
on the condition that r(←−α ) ≤L

←−e2 . Hence this composition may be defined between any two morphisms in 
EL.

Proposition 4.10. EL is a category.

Proof. Here, given two morphisms [e1, α〉 and [e2, β〉 in the category EL, we shall prove well-definedness 
and associativity of the composition when r(←−α ) ≤L

←−e2 . Clearly, the result also holds, in particular, when 
r([e1, α〉) = d([e2, β〉), i.e., when r(←−α ) = ←−e2 .

Let [e1, α〉 = [e′1, α′〉 and [e2, β〉 = [e′2, β′〉 be morphisms in the category EL such that r(←−α ) ≤L
←−e2 and 

r(
←−
α′) ≤L

←−
e′2 . Then for h, h′ ∈ S (r(α), d(β)), by Lemma 4.8 and Lemma 4.9,

[e1, (α ◦ β)h〉 = [e′1, (α′ ◦ β′)h〉 = [e′1, (α′ ◦ β′)h′〉.
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Fig. 3. Composition of morphisms in EL.

Hence the composition is well-defined.
Now we need to verify identity and associativity. Given a morphism [e, α〉 in EL from ←−e to 

←−
f ,

[e, 1e〉[e, α〉 = [e, (1e ◦ α)d(α)〉 = [e, α〉 and [e, α〉[f, 1f 〉 = [e, (α ◦ 1f )f 〉 = [e, α〉.

So [e, 1e〉 is the identity element at ←−e ∈ vEL.
Also, if [e, α〉, [f, β〉 and [g, γ〉 are composable morphisms in the category EL, then for h1 ∈ S (r(α), d(β))

and h2 ∈ S (r(β), d(γ)), by [22, Lemma 4.4 ], there exist h ∈ S (r(α), d((β ◦ γ)h2)) and h′ ∈ S (r((α ◦
β)h1), d(γ)) such that

((α ◦ β)h1) ◦ γ)h′ = (α ◦ (β ◦ γ)h2)h. (13)

So,

( [e, α〉 [f, β〉 ) [g, γ〉 =( [e, (α ◦ β)h1〉 ) [g, γ〉

=[e, ((α ◦ β)h1 ◦ γ)h′〉

=[e, (α ◦ (β ◦ γ)h2)h〉

=[e, α〉 ( [f, (β ◦ γ)h2〉 )

=[e, α〉 ( [f, β〉 [g, γ〉 ).

Thus associativity also holds. Hence EL is a category. �
Having prepared all the necessary ingredients, now we are in a position to define our category LG. Recall 

that LG := E/L and we define the morphisms in LG = EL ⊗ PL as follows:

LG := {(ε, j) ∈ EL × PL : r(ε) = d(j)}.
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In the sequel, a morphism (ε, j) in LG shall be denoted as [e, α, f〉 where ε = [e, α〉 and 
←−
f = r(j). Hence, 

by Lemma 4.7, the morphisms [e, α, f〉 = [g, β, h〉 if and only if e L g, α = β and f L h. So, if e L d(α)
and g L d(β) in the biordered set E, we have that [e, α, f〉 = [g, β, h〉 if and only if ←−α =

←−
β and f L h. In 

particular, [e, 1e, e〉 = [f, 1f , f〉 in LG if and only if eL f .
Further, given two morphisms [e1, α, g1〉, [e2, β, g2〉 in the category LG such that ←−g1 = ←−e2 , we define a 

partial composition in LG as follows. For h ∈ S (r(α), d(β)),

[e1, α, g1〉 [e2, β, g2〉 = [e1, (α ◦ β)h, g2〉. (14)

Proposition 4.11. LG is a category.

Proof. Well-definedness and associativity of the composition in LG easily follow from well-definedness and 
associativity of the composition in the category EL. (See Proposition 4.10 and Fig. 3.)

Also, given a morphism [e, α, f〉 in LG from ←−e to 
←−
f , we can see that

[e, 1e, e〉[e, α, f〉 = [e, (1e ◦ α)d(α), f〉 = [e, α, f〉

and

[e, α, f〉[f, 1f , f〉 = [e, (α ◦ 1f )f , f〉 = [e, α, f〉.

So [e, 1e, e〉 is the identity element at ←−e ∈ vLG. Hence LG is a category. �
Remark 4.4. We know that vPL = vGL = vQL = vEL = vLG = E/L . We can see that in fact all these 
categories are subcategories of LG by the following identification.

Category Typical morphism Corresponding morphism in LG

PL jL (e, f) [e, 1e, f〉
GL

←−α (e, f) [e, α, f〉
QL qL (e, u) [e, 1u, u〉
EL [e, α〉 [e, α, r(α)〉

Lemma 4.12. (LG, PL) is a category with subobjects.

Proof. Clearly, LG is a small category and by Proposition 4.1, the category PL is a strict preorder subcate-
gory of LG such that vLG = vPL. Let [e, 1e, f〉 be a morphism in PL. If [g, α, e〉 [e, 1e, f〉 = [h, β, e〉 [e, 1e, f〉, 
then [g, (α ◦ 1e)e, f〉 = [h, (β ◦ 1e)e, f〉. That is, [g, α, f〉 = [h, β, f〉. So by Lemma 4.7, we have g L h and 
α = β where α is the p-class of α in G (see (11)). Hence [g, α, e〉 = [h, β, e〉 and so [e, 1e, f〉 ∈ PL is a 
monomorphism.

Now if [e, 1e, f〉 = [g, α, h〉[h, 1h, k〉 for [e, 1e, f〉, [h, 1h, k〉 ∈ PL and [g, α, h〉 ∈ LG, then since 
[g, α, h〉[h, 1h, k〉 = [g, α, k〉, we have [g, α, k〉 = [e, 1e, f〉. Then e L g, f L k, and ←−α = ←−1e = ←−1g . So 
[g, α, h〉 = [g, 1g, h〉, i.e., [g, α, h〉 ∈ PL. Hence (LG, PL) is a category with subobjects. �

So, if e �� f , a morphism [e, 1e, f〉 ∈ PL ⊆ LG shall be an inclusion in the category LG. So, two 
inclusions [e, 1e, f〉 and [g, 1g, h〉 are equal if and only if e L g and f L h if and only if jL (e, f) = jL (g, h).

Lemma 4.13. Every inclusion in LG splits.

Proof. Let [e, 1e, f〉 be an inclusion in LG. Then since fe L e, we have a retraction [f, 1ef , ef〉 in LG such 
that
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[e, 1e, f〉 [f, 1fe, fe〉 = [e, (1e ◦ 1fe)fe, fe〉 = [e, 1e, fe〉 = [e, 1e, e〉.

Hence the lemma. �
Remark 4.5. If e �� f , a morphism [f, 1fe, fe〉 ∈ QL ⊆ LG is a right inverse to the inclusion [e, 1e, f〉. 
Hence it will be a retraction in the category LG. Observe that two retractions [e, 1u, u〉 and [f, 1v, v〉 are 
equal if and only if eL f and v = fu if and only if qL (e, u) = qL (f, v).

For α ∈ G (e, f), we can easily verify that the morphism [e, α, f〉 ∈ GL ⊆ LG is an isomorphism in 
LG. Observe that two isomorphisms [e, α, f〉 and [g, β, h〉 are equal if and only if e L g, f L h, and 
α ε(f, h) = ε(e, g) β if and only if ←−α =

←−
β .

Also, given an arbitrary morphism [e, α, f〉 in LG, we can easily see that the morphism [e, α, r(α)〉 ∈ EL ⊆
LG is the epimorphic component of the morphism [e, α, f〉. The epimorphic component shall be denoted as 
just [e, α, f〉◦ in the sequel.

Now we proceed to construct certain distinguished cones in the category LG. Given a morphism α : e → f

in the inductive groupoid G , recall that [e, α, f〉 is an isomorphism in LG from ←−e to 
←−
f . Also, for an arbitrary 

←−g ∈ vLG, observe that [g, 1g, g〉 is the identity morphism at ←−g .
Recall from Remark 4.3 that we can compose any two epimorphisms in EL and similarly in the category 

LG. In particular, we can compose [g, 1g, g〉 with [e, α, f〉, using the rule (12) for the corresponding right 
epis [g, 1g〉 and [e, α〉, respectively. We get the following morphism in LG from ←−g to 

←−
f :

[g, 1g, g〉[e, α, f〉 = [g, (1g ◦ α)h, f〉,

where h ∈ S (g, e).
Fixing α ∈ G and making ←−g run over vLG, we define a map rα : vLG → LG as

rα : ←−g �→ [g, (1g ◦ α)h, f〉,

where h ∈ S (g, e) and f L r(α).

Remark 4.6. Observe that for α, β ∈ G such that α = β, we have (1g ◦ α)h = (1g ◦ β)h by [22, Lemma 4.7]. 
So using Lemma 4.7, we have [g, (1g ◦ α)h, f〉 = [g, (1g ◦ β)h, f〉. That is, rα = rβ .

Lemma 4.14. The map rα is a cone in LG.

Proof. Since rα(g) is independent of g ∈ ←−g and h ∈ S (g, d(α)), we can see that rα is a well-defined map. 
Now if g′ ≤L g, then g′ �� g and so we have an inclusion [g′, 1g′ , g〉 in LG. Then,

[g′, 1g′ , g〉rα(←−g ) = [g′, 1g′ , g〉[g, (1g ◦ α)h, f〉
= [g′, (1g′ ◦ (1g ◦ α)h)h1 , f〉 (where h1 ∈ S (g′,d((1g ◦ α)h))

= [g′, ((1g′ ◦ 1g)g′ ◦ α)h2 , f〉 (where h2 ∈ S (g′,d(α)) using (13))

= [g′, (1g′ ◦ α)h2 , f〉

= rα(
←−
g′ ).

Also since rα(←−e ) = [e, α, f〉 is an isomorphism in the category LG, we see that rα is a cone in LG. �
Fig. 4 illustrates the cone rα in the category LG. The dashed arrow represents the morphism α ∈ G . 

The solid arrows give rise to the relevant morphisms in LG arising from the inductive groupoid. If h ∈
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Fig. 4. Cone rα in the category LG.

S (g, e), then [g, 1gh, gh〉 is a retraction in LG from ←−g to 
←−
gh. The morphism ε(gh, h) ε(h, he) (he�α) is an 

isomorphism in G from gh to k = r(he�α). So, [gh, ε(gh, h) ε(h, he) (he�α), k〉 is an isomorphism in LG from ←−
gh to 

←−
k . Also, [k, 1k, f〉 is an inclusion from 

←−
k to 

←−
f . Composing these morphisms, we get a morphism 

rα(←−g ) = [g, ε(gh, h) ε(h, he) (he�α), f〉 from ←−g to 
←−
f in the category LG.

Similarly, since 1e ∈ G , we can build cones re(←−g ) = [g, (1g ◦ 1e)h, e〉 by taking α = 1e and h ∈ S (g, e).
We shall need the following lemma in the sequel.

Lemma 4.15. Let rα and rβ be cones in the category LG as defined above. Then

rα rβ = r(α◦β)h where h ∈ S (r(α),d(β)).

Proof. Let α, β ∈ G be such that r(α) = f and r(β) = g, then for an arbitrary e ∈ E, using the composition 
(5) and for h1 ∈ S (e, d(α)) and h2 ∈ S (f, d(β)), we have

rα rβ(←−e ) = [e, (1e ◦ α)h1 , f〉 [f, (1f ◦ β)h2 , g〉◦

= [e, (1e ◦ α)h1 , f〉 [f, (1f ◦ β)h2 , g
′〉 where g′ := r((1f ◦ β)h2)

= [e, ((1e ◦ α)h1 ◦ (1f ◦ β)h2)h3 , g
′〉 where h3 ∈ S (r((1e ◦ α)h1),d((1f ◦ β)h2)).

Then, using [22, Lemma 4.4] with h4 ∈ S (f, d((1f ◦β)h2)), h5 ∈ S (e, d(α◦(1f ◦β)h2)h4)), h6 ∈ S (d(α), f), 
and h ∈ S (r((α ◦ 1f )h6), d(β)), we have

((1e ◦ α)h1 ◦ (1f ◦ β)h2)h3 = (1e ◦ (α ◦ (1f ◦ β)h2)h4)h5

= (1e ◦ ((α ◦ 1f )h6 ◦ β)h)h5

= (1e ◦ (α ◦ β)h)h5 .

The last equality holds as r(α) = f implies (α ◦ 1f )h6 = α and g′ L (α ◦ β)h.
Combining the above arguments, for an arbitrary e ∈ E, we have

rα rβ(←−e ) = [e, ((1e ◦ α)h1 ◦ (1f ◦ β)h2)h3 , g
′〉

= [e, (1e ◦ (α ◦ β)h)h5 , g
′〉

= r(α◦β)h(←−e ).

Hence, rα rβ = r(α◦β)h . �



30 P.A. Azeef Muhammed, M.V. Volkov / Journal of Pure and Applied Algebra 226 (2022) 106940
The above proof essentially shows how the role played by sandwich sets in inductive groupoid theory is 
captured by the cone multiplication (5) in cross-connection theory.

Remark 4.7. Observe that if ef is a basic product in E, then in the inductive groupoid G , 1ef = (1e ◦ 1f )h
where h ∈ S (e, f). Hence using Remark 4.6 and Lemma 4.15, we have

ref = r(1e◦1f )h = rerf .

Hence for an element e ∈ E, the cone re is an idempotent cone in LG.

Theorem 4.16. (LG, PL) forms a normal category.

Proof. By Lemma 4.12, (LG, PL) is a category with subobjects. Given an arbitrary morphism in [e, α, f〉 ∈
LG,

[e, α, f〉 = [e, 1d(α),d(α)〉 [d(α), α, r(α)〉 [r(α), 1r(α), f〉

is a normal factorization such that [e, 1d(α), d(α)〉 is a retraction, [d(α), α, r(α)〉 is an isomorphism and 
[r(α), 1r(α), f〉 is an inclusion. By Lemma 4.13, every inclusion in LG splits. Also, given an object ←−e ∈ vLG, 
the map re is an idempotent cone with apex ←−e . Hence the theorem. �
Remark 4.8. By Remarks 3.1 and 4.5, we have several associated ‘one-sided’ ordered groupoids with a given 
cross-connection. The above theorem describes the normal category (a ‘one-sided’ category with a regular 
partially ordered set [14] as its object set) constructed from an inductive groupoid. So, it may be worthwhile 
to investigate if we can associate a normal category from a suitable ordered groupoid by assuming its object 
set to form a regular partially ordered set.

4.2. The normal category RG

Dually, given an inductive groupoid G , we proceed to build a ‘right-hand side’ normal category via 
intermediary categories PR, GR and QR, as follows. One major difference from the construction of the 
category LG in the preceding subsection is that the morphisms in the ordered groupoid GR are induced 
from the inductive groupoid in the opposite direction (see below). We shall omit most of the details as the 
dual arguments of the construction of LG will suffice.

First, given the inductive groupoid G with regular biordered set E, consider the quotient set vRG := E/R

where R =�r ∩ (�r)−1. This gives a regular partially ordered set with respect to ≤R :=�r /R. We shall 
denote the R-class of e in E/R by −→e .

Now we aim to build three categories — PR, GR and QR — that all have E/R as the object set, that 
is, vPR = vGR = vQR := E/R. It remains to define the morphisms in each of these three categories.

We begin with PR which has a unique morphism, denoted jR(e, f), from −→e to 
−→
f for each pair (−→e , −→f )

such that −→e ≤R
−→
f . Clearly, PR is a strict preorder category under the following composition:

jR(e, f) jR(f, g) := jR(e, g).

We proceed with defining the morphisms in GR. Given any two morphisms α, β in the inductive groupoid 
G , we first define an equivalence relation ∼R as follows:

α ∼R β ⇐⇒ d(α) R d(β), r(α) R r(β) and α ε(r(α), r(β)) = ε(d(α),d(β)) β. (15)
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Given a morphism α ∈ G (e, f), we denote the ∼R-class of G containing α by −→α and we treat −→α as a 
morphism in GR from 

−→
f to −→e ; observe the direction change! By the definition of −→α , we have d(−→α ) =

−→
f =−−→

r(α) so that d(−→α ) =
−−→
r(α) for every α ∈ G .

Further for −→α , 
−→
β ∈ GR such that d(α) R r(β), we define a composition in GR as

−→α−→
β :=

−−−−−−−−−−−−→
β ε(r(β),d(α)) α

so that −→α−→
β will be a morphism in GR from d(−→α ) =

−−→
r(α) to r(

−→
β ) =

−−→
d(β). It can be shown that GR is a 

groupoid under the above composition.
Finally, for the morphisms in QR, if f �r e, then for each u ∈ E such that u � e and u R f , we define a 

morphism qR(e, u) in QR from −→e to 
−→
f . If we have two morphisms qR(e, u) and qR(f, v) in QR such that 

u R f , then we compose them as follows:

qR(e, u) qR(f, v) = qR(e, vu)

so that QR forms a category.
Now, to build the category ER using the categories QR and GR, we consider an intermediary quiver E

with object set vE := E/R and morphisms as follows:

E := {(q,−→α ) ∈ QR × GR : r(q) = d(−→α )}.

Then, we define an equivalence relation ∼E on the set E as follows: for ξ1 = (q1(e, u), −→α ), ξ2 = (q2(f, v), 
−→
β ),

ξ1 ∼E ξ2 ⇐⇒ e R f, u L v and −→α =
−−−−→
ε(u, v)

−→
β .

Now define the category ER with the object set vER := E/R and with morphisms being ∼E -classes of 
morphisms in E . A morphism (qR(e, u), 

−−−−→
α(f, u)) in E such that r(α) = u is called a left epi in the category 

ER and shall be denoted by 〈e, α] in the sequel. We use left epis as ‘good’ representatives of ∼E -classes: the 
left epi 〈e, α] represents the ∼E -class

{ (qR(f, v),
−→
θ ) ∈ E : f R e, v L r(α) and

−→
θ =

−−−−−−−−→
α ε(r(α), v) }.

Then we define a composition in ER as follows. Let ε1 = 〈e1, α(f1, u)] and ε2 = 〈e2, β(f2, v)] be left epis in 
the category ER. If 

−→
f1 ≤R

−→e2 , then we define

ε1ε2 := 〈e1, θ] (16)

where for h ∈ S (r(β), d(α)) = S (v, f1),

θ := (β ◦ α)h = (β�vh) ε(vh, h) ε(h, hf1) (hf1�α).

Finally, we define the morphisms in RG = ER ⊗ PR as follows:

RG := {(ε, j) ∈ ER × PR : r(ε) = d(j)}.

We shall denote a morphism (ε, j) in RG by 〈e, α, f ] where ε = 〈e, α] and 
−→
f = r(j). Hence 〈e, α, f ] = 〈g, β, h]

if and only if e R g, α = β and f R h. So, if e R r(α) and g R r(β) in the biordered set E, we have that 
〈e, α, f ] = 〈g, β, h] if and only if −→α =

−→
β and f R h. Recall that here α represents the p-class of α in G (see 

(11)). In particular, 〈e, 1e, e] = 〈f, 1f , f ] in RG if and only if eRf .
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Further, given two morphisms 〈e1, α, g1], 〈e2, β, g2] in RG such that −→g1 = −→e2 , we define a partial compo-
sition in RG as follows. For h ∈ S (r(β), d(α)),

〈e1, α, g1] 〈e2, β, g2] := 〈e1, (β ◦ α)h, g2]. (17)

We can easily verify that RG is a category such that PR, GR, QR and ER are all subcategories of RG

by the following identification.

Category Typical morphism Corresponding morphism in RG

PR jR(e, f) 〈e, 1e, f ]
GR

−→α 〈r(α), α,d(α)]
QR qR(e, u) 〈e, 1u, u]
ER 〈e, α] 〈e, α,d(α)]

As in the case of LG, we can easily see that given a morphism 〈e, 1e, f ] ∈ PR ⊆ RG, it is an inclusion, a 
morphism 〈e, α, f ] ∈ GR ⊆ RG is an isomorphism and a morphism 〈f, 1fe, fe] ∈ QR ⊆ RG is a retraction in 
the category RG. Also, we can verify that (RG, PR) forms a normal category with distinguished principal 
cones lα defined as follows. For a morphism α in the inductive groupoid G and for every −→g ∈ vRG,

lα(−→g ) := 〈g, (α ◦ 1g)h, f ]

where h ∈ S (r(α), g) and f R d(α).

4.3. The cross-connection ΓG of an inductive groupoid G

Now, we proceed to construct the required cross-connection ΓG. Recall that the principal cone re is defined 
as re(←−g ) = [g, (1g ◦ 1e)h, e〉 for each g ∈ E. The cone re determines an H-functor H(re; −) : LG → Set so 
that H(re; −) ∈ vN∗LG. Also recall that ηre is the natural isomorphism between the H-functor H(re; −)
and the covariant hom-functor LG(←−e , −) : LG → Set determined by the object ←−e ∈ vLG. Now, define a 
functor ΓG : RG → N∗LG as follows:

vΓG(−→e ) := H(re;−) and ΓG(〈e, α, f ]) := ηreLG([f, α, e〉,−)η−1
rf

(18)

for each −→e ∈ vRG and for each morphism 〈e, α, f ] ∈ RG(−→e , −→f ). The natural transformation ΓG(〈e, α, f ])
above may also be described by the following commutative diagram:

H(re;−)
ηre

ΓG(〈e,α,f ])

LG(←−e ,−)

L ([f,α,e〉,−)

←−e

H(rf ;−)
η
rf

LG(
←−
f ,−)

←−
f

[f,α,e〉

Now, we proceed to show that ΓG is a cross-connection and for that, first we need to prove that ΓG

is a local isomorphism. One can prove directly that the functor ΓG is a local isomorphism by working 
with the morphisms in the functor category N∗LG, but it would involve a rather cumbersome argument 
and use of several undefined ideas. So, we take an alternate easier route. We shall realize the functor 
ΓG as a composition of two functors, namely a local isomorphism F̄ : RG → RTLG

and an isomorphism 
Ḡ : RTLG

→ N∗LG; thereby proving that ΓG is a local isomorphism. It is worth noting that a similar 
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technique has been employed in [23, Section IV.1]. To this end, we shall require the following discussion 
about the structure arising from a given normal category. As the reader shall see, this is the only place 
where regular semigroups surface in our discussion.

Given a normal category C , it can be seen that [23] the set of all the cones in C with the special 
composition as defined in (5) forms a regular semigroup known as the semigroup of cones in C and denoted 
by TC .

Also, given a regular semigroup S, we can naturally associate with it two normal categories, each arising 
from the principal left and right ideals respectively (denoted as LS and RS respectively). An object of 
the category LS is a principal left ideal Se for e ∈ E, and a morphism from Se to Sf is a partial right 
translation ρ(e, u, f) : u ∈ eSf . Two morphisms ρ(e, u, f) and ρ(g, v, h) are equal in LS if and only if e L g, 
f L h, u ∈ eSf , v ∈ gSh, u = ev, and, consequently, v = gu. Dually, we can define RS .

Given an abstractly defined normal category C with an associated regular semigroup TC , the relationship 
of the normal categories arising from the semigroup TC is described in the following theorem.

Theorem 4.17 ([23, Theorem III.19, Theorem III.25]). Let C be a normal category with normal dual N∗C . 
The category LTC is normal category isomorphic to the category C and the category RTC is normal category 
isomorphic to the normal dual N∗C .

So now, we first proceed to prove that F̄ : RG → RTLG
defined as follows is a local isomorphism. For 

each −→e ∈ vRG and for each morphism 〈e, α, f ] ∈ RG(−→e , −→f ),

vF̄ (−→e ) := reTLG and F̄ (〈e, α, f ]) := λ(re, rα, rf ). (19)

To show that F̄ is a local isomorphism, we begin by verifying the following lemma.

Lemma 4.18. F̄ is a covariant functor.

Proof. We first need to verify that the F̄ is well-defined. If −→e =
−→
f , then e R f . Then for an arbitrary 

k ∈ E,

rerf (
←−
k ) = r(1e◦1f )h(

←−
k ) where h ∈ S (e, f), using Lemma 4.15

= re(
←−
k ) since e R f implies ef = e.

Hence, in the semigroup TLG, we have re · rf = rf . Similarly, we can show that rf · re = re. So, re R rf

and so, the right ideal reTLG = rfTLG. Hence vF̄ is well-defined.
Now, suppose that 〈e, α, f ] = 〈g, β, h]. That is, e R g, α = β and f R h. Then, as shown above re R rg

and rf R rh. Also, for an arbitrary k ∈ E,

rβ re(
←−
k ) = r(β◦1e)h1 (

←−
k ) where h1 ∈ S (r(β), e), using Lemma 4.15

= r(α◦1e)h1 (
←−
k ) since α = β

= rα(
←−
k ) since r(α) �� e implies r(α)e = r(α) implies (α ◦ 1e)h1 = α.

That is, in the semigroup TLG, we have rβ re = rα and so λ(re, rα, rf ) = λ(rg, rβ , rh). Hence F̄ is well-
defined. Also, if 〈e, α, f ] and 〈g, β, h] are composable morphisms in the category RG, then

F̄ (〈e, α, f ]) F̄ (〈g, β, h]) = λ(re, rα, rf ) λ(rg, rβ , rh)

= λ(re, rβrα, rh) since composition flips in RTLG

= λ(re, r(β◦α)h1 , rh) for h1 ∈ S (r(β),d(α)), using Lemma 4.15.
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Also,

F̄ (〈e, α, f ]〈g, β, h]) = F̄ (〈e, (β ◦ α)h1 , h]) for h1 ∈ S (r(β),d(α))

= λ(re, r(β◦α)h1 , rh).

Hence,

F̄ (〈e, α, f ]) F̄ (〈g, β, h]) = F̄ (〈e, α, f ]〈g, β, h]).

Moreover,

F̄ (1−→e ) = F̄ (〈e, 1e, e]) = λ(re, re, re) = 1reTLG
.

Hence F̄ is a well-defined covariant functor. �
Before we proceed further, we prove the following lemma which relates the biordered set E of an inductive 

groupoid G with the biordered set of the semigroup of cones TLG in the associated normal category LG.

Lemma 4.19. The map θ : E → E(TLG) given by e �→ re is a regular bimorphism of biordered sets. Further, 
if e, f ∈ E with re �r rf , then there exists h ∈ E such that hθ = re and h �r f .

Proof. First, suppose that (e, f) ∈ DE . Suppose that e �� f , i.e., e f = e. Then, re rf = r(1e◦1f )e = re. So 
re �� r

f and (re, rf ) ∈ DE(TLG). Similarly we can verify for the preorders �r, (��)−1 and (�r)−1. Hence 
(BM1) is satisfied.

Also, using Remark 4.7, we can see that

(e f)θ = re f = re rf = (eθ) (fθ).

Hence the condition (BM2) is also satisfied and θ is a bimorphism.
Now, if h ∈ S (e, f), then as above, we can easily verify that rh ∈ S (re, rf ); thus (RBM) is satisfied and 

so θ is a regular bimorphism from E to E(TLG).
The rest of the statement of the lemma directly follows from [22, Proposition 2.14]. �

Proposition 4.20. The functor F̄ : RG → RTLG
is a local isomorphism.

Proof. Lemma 4.18 shows that F̄ is a well-defined functor. To show that F̄ is a local isomorphism, we need 
to show that F̄ is inclusion preserving, fully faithful and for each c ∈ vC , F|〈c〉 is an isomorphism of the 
ideal 〈c〉 onto 〈F (c)〉. First observe that for an inclusion 〈e, 1e, f ] ∈ RG, we have F̄ (〈e, 1e, f ]) = λ(re, re, rf ). 
Then by dual of [23, Proposition IV.13(d)], the morphism λ(re, re, rf ) is an inclusion in RTLG

and so F̄ is 
inclusion preserving.

Now we proceed to show that F̄ is fully-faithful. Suppose that 〈e, α, f ] and 〈e, β, f ] are two morphisms in 
RG from −→e to 

−→
f such that F̄ (〈e, α, f ]) = F̄ (〈e, β, f ]). Then, λ(re, rα, rf ) = λ(re, rα, rf ), that is, rα = rβ . 

In particular, for 
←−
f ∈ vLG, we have rα(

←−
f ) = rβ(

←−
f ). That is, [f, (1f ◦α)h1 , r(α)〉 = [f, (1f ◦β)h2 , r(β)〉. But 

since d(α) �r f , we have fd(α) = d(α), i.e., (1f ◦ α)h1 = α. Also since d(β) �r f , we have (1f ◦ β)h2 = β. 
Thus we see that [f, α, r(α)〉 = [f, β, r(β)〉. This implies that, in particular, α = β. So, we have 〈e, α, f ] =
〈e, β, f ] and hence F̄ is a faithful functor.

To show that F̄ is full, let λ(re, γ, rf ) be an arbitrary morphism in RTLG
such that γ ∈ rf TLG re. Then 

rfγ = γ = γre and so, γ = rf ∗ γ(
←−
f ) and cγ ⊆ cre = ←−e . Observe that γ(

←−
f ) is an epimorphism in LG and 

so γ(
←−
f ) = [f, α, r(α)〉 for some α ∈ G such that d(α) �r f . So,
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rα = r(1f◦α)h = rfrα = rf ∗ [f, α, r(α)〉 = rf ∗ γ(
←−
f ) = γ.

So, F̄ (〈e, α, f ]) = λ(re, rα, rf ) = λ(re, γ, rf ) and F̄ is full. Hence F̄ is fully-faithful.
Now, to complete the proposition, we need to show that for any g ∈ E, the functor F̄|〈−→g 〉 is an iso-

morphism. Since F̄ is already shown to be fully-faithful, it suffices to show that the vertex map vF̄|〈−→g 〉

is an order isomorphism. To this end, suppose that −→e , −→f ≤R
−→g such that F̄ (−→e ) = F̄ (

−→
f ). So, we have 

reTLG = rfTLG, i.e., re R rf ⇐⇒ rerf = rf , in the biordered set E(TLG). Then in the biordered set 
E, we have e, f ∈ E such that re �r rf . So by Lemma 4.19, there exists h ∈ E such that rh = re and 
h �r f . Then for k ∈ S (h, f) and using Remark 4.7, we have

rhf = rhrf = rerf = rf .

Evaluating the apices of the cones, we get hf L f . Also since h �r f implies hf � f , we have that hf = f , 
i.e., f �r h. But since h �r f also, we have h R f . Then,

[e, 1e, e〉 = [e, 1ge, e〉 since e �r g implies e = ge

= [e, (1g ◦ 1e)k1 , e〉 where k1 ∈ S (g, e)

= [e, 1g, g〉 [g, 1e, e〉 using (14)

= [e, 1g, g〉 [g, 1h, h〉 since [g, 1e, e〉 = re(←−g ) = rh(←−g ) = [g, 1h, h〉
= [e, (1g ◦ 1h)k2 , h〉 using (14) where k2 ∈ S (g, h)

= [e, 1gh, h〉 since gh is a basic product in E

= [e, 1h, h〉 since h �r g implies h = gh.

So by Lemma 4.7, we see that 1e = 1h. That is, e = h and since h R f , we have e R f . Thus, −→e =
−→
f and 

so vF̄ is injective on 〈−→g 〉.
Now, to prove vF̄ is surjective on 〈−→g 〉, let us suppose that ε ∈ E(TLG) such that ε TLG ⊆ rg TLG. 

Then ε �r rg and so ε R εrg � rg. Without any loss in generality, we can assume that ε = εrg and then we 
have ε � rg. If cε = ←−e , then ←−e = cε ⊆ crg = ←−g and so e �� g. Since e L ge � g, we can assume that e � g. 
Now since ε �r rg implies rgε = ε, using [23, Lemma III.3], there is a unique epimorphism μ ∈ LG(←−g , ←−e )
such that ε = rg ∗ μ. Then,

1←−e = [e, 1e, e〉 = ε(←−e ) = rgε(←−e ) = rg(←−e ) ∗ μ = [e, 1eg, g〉μ = [e, 1e, g〉μ.

Observe that [e, 1e, g〉 is an inclusion and so μ is a retraction in LG of the form [g, 1f , f〉 for some f � g, 
i.e., gf = fg = f . Then, since μ is an epimorphism and using (5),

ε = rg ∗ [g, 1f , f〉 = rg ∗ (rf (←−g ))◦ = rg rf = rgf = rf .

Thus F̄ (
−→
f ) = rf TLG = ε TLG with 

−→
f ≤R

−→g and so F̄ is surjective on 〈−→g 〉. This also implies that if −→
f ≤R

−→g ⇐⇒ rf TLG ⊆ rg TLG. Hence the object map vF̄ is an order isomorphism on 〈−→g 〉. Thus, F̄ is 
a local isomorphism. �
Theorem 4.21. The triple (RG, LG; ΓG) is a cross-connection.

Proof. First, recall from Theorem 4.17 that for a normal category C , the normal category RTC is isomorphic 
to the normal dual N∗C . For the case when C = LG, an isomorphism Ḡ : RTLG

→ N∗LG can be defined 
as follows. For each εTLG ∈ vRTLG

and for each morphism λ(ε, γ, ε′) : εTLG → ε′TLG, we set
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vḠ(εTLG) := H(ε;−) and Ḡ(λ(ε, γ, ε′)) := ηεLG(γ̃,−)η−1
ε′ . (20)

Here γ̃ = γ(cε′)j(cγ , cε), as defined in [23, Lemma III.22].
Now we make use of the local isomorphism F̄ : RG → RTLG

as defined in (19). For a morphism 〈e, α, f ] ∈
RG, we have F̄ (〈e, α, f ]) = λ(re, rα, rf ) by definition. Since r̃α = [f, α, e〉, we have

F̄ Ḡ(〈e, α, f ]) = ηreLG([f, α, e〉,−)η−1
rf

.

We see that the functor ΓG : RG → N∗LG defined in (18) is equal to the composition of the local isomor-
phism F̄ and the isomorphism Ḡ. Hence the functor ΓG is a local isomorphism from RG to N∗LG.

Further, for every ←−e ∈ vLG, we have MΓG(−→e ) = MH(re; −) = Mre. Then the component re(←−e ) =
[e, 1e, e〉 is an isomorphism, so that ←−e ∈ MΓG(−→e ). Thus ΓG is a cross-connection from RG to N∗LG. �

Dually, we can show that (LG, RG; ΔG) defined by the functor ΔG : LG → N∗RG as follows

vΔG(←−e ) := H(le;−) and ΔG([e, α, f〉) := ηleRG(〈f, α, e],−)η−1
lf

(21)

is a cross-connection.
We can now see that the biordered set EΓG

of the cross-connection (RG, LG; ΓG) is given by the set

EΓG
:= {(←−e ,−→e ) : e ∈ E}.

Here the element (←−e , −→e ) corresponds to the pair of cones (γ(←−e , −→e ), δ(←−e , −→e )) = (re, le). Further if we 
define the preorders �� and �r on EΓG

as follows:

(←−e ,−→e ) �� (
←−
f ,

−→
f ) ⇐⇒ ←−e ≤L

←−
f and (←−e ,−→e ) �r (

←−
f ,

−→
f ) ⇐⇒ −→e ≤R

−→
f , (22)

then EΓG
forms a regular biordered set and it is biorder isomorphic to the biordered set E of the inductive 

groupoid G (also see [21]). Moreover, it can be easily verified that given (←−e , −→e ), (
←−
f , 

−→
f ) ∈ EΓG

, the 
morphism [e, α, f〉 ∈ LG(←−e , ←−f ) will be the transpose of the morphism 〈f, α, e] ∈ RG(

−→
f , −→e ), relative to 

the cross-connection (RG, LG; ΓG).

4.4. The functor C : IG → CC

Having built the cross-connection (RG, LG; ΓG) associated with an inductive groupoid (G , ε), now we 
proceed to show that this correspondence is, in fact, functorial.

Suppose that (G , ε) and (G ′, ε′) are inductive groupoids with biordered sets E and E′, respectively. Let 
their associated cross-connections be (RG, LG; ΓG) and (RG′ , LG′ ; ΓG′), respectively. If F : G → G ′ is an 
inductive functor between the inductive groupoids G and G ′, then define two functors F1 : LG → LG′ and 
F2 : RG → RG′ as follows:

vF1(←−e ) :=
←−−
F (e) and F1([e, α, f〉) := [F (e), F (α), F (f)〉, and

vF2(−→e ) :=
−−→
F (e) and F2(〈e, α, f ]) := 〈F (e), F (α), F (f)].

Proposition 4.22. The pair (F1, F2) is a cross-connection morphism from (RG, LG; ΓG) to (RG′ , LG′ ; ΓG′).

Proof. Since F is an inductive functor, we can easily verify that F1 and F2 are well-defined functors. Since 
F is order preserving, F1 and F2 are inclusion preserving.
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For e ∈ E, if (←−e , −→e ) ∈ EΓG
, then since vF : E → E′ is a bimorphism, we have F (e) ∈ E′ and so 

(
←−−
F (e), 

−−→
F (e)) ∈ EΓG′ . Then, for an arbitrary g ∈ E,

F1(γ(←−e ,−→e )(←−g )) = F1([g, (1g ◦ 1e)h, e〉) where h ∈ S (g, e)

= [F (g), F ((1g ◦ 1e)h), F (e)〉

= [F (g), (F (1g) ◦ F (1e))h′ , F (e)〉 where h′ := F (h) ∈ F (S (g, e))

⊆ S (F (g), F (e)) as F is a functor

and vF is a regular bimorphism

= rF (e)(
←−−
F (g))

= γ(
←−−
F (e),

−−→
F (e))(

←−−
F (g))

= γ(F1(←−e ), F2(−→e ))(F1(←−g )).

Hence the pair of functors (F1, F2) satisfies the condition (M1).
Suppose that (←−e , −→e ), (

←−
f , 

−→
f ) ∈ EΓG

such that the morphism 〈f, α, e] ∈ RG(
−→
f , −→e ) is the transpose of 

the morphism [e, α, f〉 ∈ LG(←−e , ←−f ). Then,

F2(〈f, α, e]) = 〈F (f), F (α), F (e)]

= [F (e), F (α), F (f)〉∗

= (F1([e, α, f〉))∗.

So, the pair of functors (F1, F2) satisfies the condition (M2) also and hence is a morphism of cross-
connections. �

The proof of the following theorem is routine with all the preparations we have made so far.

Theorem 4.23. The assignments

(G , ε) �→ (RG,LG; ΓG) and F �→ (F1, F2)

is a functor C : IG → CC.

5. The category equivalence

Having built the functors I : CC → IG and the functor C : IG → CC in the previous sections, now we 
proceed to prove the category equivalence between the categories IG and CC. To this end, we need to show 
that the functor IC is naturally isomorphic to the functor 1CC and the functor CI is naturally isomorphic 
to the functor 1IG.

We first show that IC ∼= 1CC. Suppose that (D , C ; Γ) is a cross-connection with an associated inductive 
groupoid GΓ. Recall that for any two elements (c, d) and (c′, d′) in the biordered set EΓ,

(c, d) �� (c′, d′) ⇐⇒ c ⊆ c′ and (c, d) �r (c′, d′) ⇐⇒ d ⊆ d′. (23)

That is, (c, d) L (c′, d′) ⇐⇒ c = c′ and so for an arbitrary (c, d) ∈ EΓ, the canonical image 
←−−−
(c, d) = c. 

Similarly, we have 
−−−→
(c, d) = d.
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Also, for a morphism (f, g) : (c, d) → (c′, d′) in the groupoid GΓ, by Proposition 4.3, we have 
←−−−
(f, g) =

f : c → c′. So, the corresponding morphism 
←−−−
(f, g) in the category (GΓ)L can be represented by just [c, f, c′〉. 

Similarly, we have 
−−−→
(f, g) = 〈d, g, d′].

So, if (D , C ; Γ) is a cross-connection with an associated inductive groupoid GΓ and the cross-connection 
C(GΓ) associated with the inductive groupoid GΓ is given by (RGΓ , LGΓ ; ΓGΓ), then the functors (FΓ1, FΓ2)
defined as follows constitute a cross-connection isomorphism. The functors FΓ1 : C → LGΓ and FΓ2 : D →
RGΓ are given by

vFΓ1(c) := c and FΓ1(f) := [c, f, c′〉;
vFΓ2(d) := d and FΓ2(g) := 〈d, g, d′].

Hence, for each cross-connection (D , C ; Γ), we can easily see that the assignment

(D ,C ; Γ) �→ (FΓ1, FΓ2)

will be a natural isomorphism between the functor 1CC and the functor IC. That is, for an arbitrary 
cross-connection morphism (F1, F2) : (D , C ; Γ) → (D ′, C ′; Γ′), the following diagram commutes:

(D ,C ; Γ)
(FΓ1,FΓ2)

(F1,F2)

(RGΓ ,LGΓ ; ΓGΓ)

IC(F1,F2)

(D ′,C ′; Γ′)
(FΓ1′ ,FΓ2′ ) (RGΓ′ ,LGΓ′ ; ΓGΓ′ )

Now, conversely suppose (G , ε) is an inductive groupoid such that C(G ) = (RG, LG, ΓG), then define 
the functor FG : G → GC(G ) ⊆ LG × RG as follows:

vFG (e) := (←−e ,−→e ) and FG (α) := ([d(α), α, r(α)〉, 〈d(α), α−1, r(α)]).

We can easily verify that FG is an inductive isomorphism. Further, for an inductive functor F : G → G ′, 
the assignment

G �→ FG

makes the following diagram commute:

G
FG

F

GC(G )

CI(F )

G ′ FG ′
GC(G ′)

Hence, the functor CI is naturally isomorphic with the functor 1IG.
Summarizing the discussion in this section, we have the following theorem which is the main result of 

this paper.
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Theorem 5.1. The category CC is equivalent to the category IG.

6. Conclusion

We have described the inductive groupoid associated with a cross-connection, and conversely, we have 
built the cross-connection associated with an inductive groupoid. We emphasize once again that both con-
structions have been accomplished within a purely category theoretic framework, free of any semigroup 
theoretic assumptions, under which the concept of an inductive groupoid and that of a cross-connection 
were initially conceived almost half a century ago.

Because of certain historical circumstances,5 the category CC was much less known than the category IG. 
The recent studies by the first author and Rajan [2–5] have shown that CC admits worthwhile applications 
within semigroup theory. We anticipate that our present result may serve as a starting point for looking for 
a wider spectrum of applications. As a concrete (though, most probably, difficult) task, one can consider 
developing an abelian version of the theory of cross-connections, aiming at a new categorical framework for 
the class of von Neumann regular rings. In a sense, this would bring the theory back to its initial origin — 
see our discussion in the introduction.

Another possible development consists in involving categories enhanced with an appropriate topology. 
Many natural groupoid-based structures like pseudogroups of transformations and étale groupoids [28] come 
with inbuilt topology by the very definition, and a topological version of the theory of inductive groupoids 
has already been considered by Rajan [26]. This suggests that topological variants of the theory of cross-
connections should be possible and might be relevant.

A further direction is associated with the generalizations of the categorical structures involved. Several 
generalizations of inductive groupoids have been proposed and studied in the recent years (see [1,16,35,36], 
for instance). On the other side, the cross-connections of consistent categories (which are generalizations of 
normal categories) have been considered in [6]. It may be worthwhile to explore the inter-connections between 
the categorical structures arising from these generalizations. In particular, our results can guide in the 
characterization of the cross-connection constructions corresponding to the aforementioned generalizations of 
inductive groupoids. In this regard, as the anonymous referee has pointed out, “the cross-connections might 
prove a useful tool for non-regular semigroups and rings, where inductive groupoids and their generalizations
fail, since the latter rely on idempotents whereas the former (in theory at least) do not”.
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