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Abstract. We study behavioral change - as a transition between coexisting

attractors - in the context of a stochastic, non-linear consumption model with

interdependent agents. Relying on the indirect approach to the analysis of a
stochastic dynamic system, and employing a mix of analytical, numerical and

graphical techniques, we identify conditions under which such transitions are

likely to occur. The stochastic analysis depends crucially on the stochastic
sensitivity function technique as it can be applied to the stochastic analoga of

closed invariant curves [14], [1]. We find that in a moderate noise environment

increased peer influence actually reduces the complexity of observable long-run
consumer behavior.

1. Introduction. We analyze the dynamics of a stochastic discrete-time system
whose deterministic skeleton consists of a 2D noninvertible map which has an eco-
nomic interpretation. Our study considers an economically meaningful subset of
the parameter space associated with the coexistence of attractors. Each of these at-
tractors can be thought of as the state-space representation of alternative long-run
consumption behavior. In particular, we study the transition dynamics between the
coexisting attractors and demonstrate that - irrespective of the type of stochastic
perturbations considered - a study of the dynamic behavior can be facilitated two
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derivates of sensitivity analysis: confidence sets of attractors and the related critical
noise intensities.

The paper tries to achieve two goals. First, we aim at extending previous work, by
providing another example for the versatility of the stochastic sensitivity function
technique (SSF) in the context of noise induced transition. Second, we devise a
framework aimed at providing guidance for the analysis of noise induced transition
in the presence of coexistence of attractors. We have not encountered a comparable
formalization in the literature. The usefulness of the framework is demonstrate, by
applying it to a dynamic stochastic consumption model.

To realize our objectives, we draw on developments and results from the study
of (i) deterministic 2D-noninvertible maps, (ii) noise-induced transitions, and form
the (iii) sensitivity analysis of dynamic systems.

Motivated by early work on endogenous preference change due to [3], [8] and [9]
derived and analyzed a deterministic, non-linear model of the consumption process
emphasizing non-market aspects of consumption. A rigorous re-analysis of the
model has recently been provided by [5], [6]. Stochastic variants, with and without
interaction between individuals, have been considered by [12], [11].

Sensitivity analyses reveal the effects of random perturbations on attractors of
dynamic systems. Research in this area tends to rely on a semi-analytical approach
due to [14]. The technique relies on the indirect method of studying stochastic
dynamic systems. Recent examples for successful implementations of the technique
include [20] who discuss noise induced extinction in a model of bacterial infection
and [18] who study the effect of noise on attractors in a dynamic model of the cardiac
action potential. [16] study noise-induced transitions in the context of coupled
chaotic oscillators. Moreover, the stochastic sensitivity function methodology has
been used to study the sensitivity of attractors in economic and financial models
formulated in discrete time in [11] and [10].

Our stochastic consumption model is presented in Section 2. While Section 3
provides a review of some global structures of the deterministic nonlinear system in
the area of multi-stability, Section 4 focuses on the stochastic dynamics prevailing in
this region of coexisting attractors. Next, in Section 5, we introduce the stochastic
sensitivity function (SSF) approach, outline its derivates central to our approach,
and discuss how it can be integrated with concepts from deterministic dynamics to
study transitions between coexisting attractors in a stochastic setting. Next, we use
the resulting framework to study transition events between consumption behaviors
in Sections 6 and 7. Relying on the concept of critical noise intensities in the former
section, we adopt a space state perspective to dissect a transition event involving
two types of closed invariant curves for the case of additive noise. Finally, we discuss
our results and gather main conclusions in Section 8.

2. The model. The background for our investigation of transitions between long-
run consumption behaviors is constituted by work in dynamic microeconomics merg-
ing the concepts of endogenous preference adjustment and interdependencies be-
tween consumers. The model captures the economic as well as the social dimension
of consumption in noisy environments.

Following [8] and [9], we consider two myopic utility-maximizing individuals, in-
dexed by i = 1, 2, who consume amounts of two non-storable commodities x and
y. At every time period, each individual equipped with an idiosyncratic preference
order (assumed to be representable by a utility function) is endowed with a fixed
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exogenous income bi. Confronted with the time-invariant price system p = (px, py),
each individual chooses to consume (xi t, yi t) units of the respective commodities.
This choice is optimal given the preferences held by the individual at time t. Run-
ning counter to mainstream microeconomics, we allow the individual’s preference
to vary between time periods in response to its own past consumption experience
as well as the past consumption of the respective other individual. Moreover, we
consider both additive and parametric noise. While the former models additive
shocks to quantities purchased, the latter considers an informational asymmetry in
the sense that one individual is uncertain about the income of the other individual
while the other individual is fully informed.

Since we assume that an individual’s consumption expenditure for units of the
commodities x and y exhausts its income, the consumption dynamics can be de-
scribed in terms of commodity x only. The demand for commodity x in time evolves
according to the non-linear stochastic difference equation

xt+1 = f(xt) + εg(xt)ξt, (1)

where f represents the 2D noninvertible map f : R2
+ → R2

+

f(xt) =


b1
pxpy

(α1x1t(b1 − pxx1t) +D12x2t(b2 − pxx2t))

b2
pxpy

(α2x2t(b2 − pxx2t) +D21x1t(b1 − pxx1t))

 (2)

and g denotes the smooth matrix function

g(xt) =

 ι1
b1D12

pxpy
x2t ι2 0

0 0 ι3

 . (3)

The real, strictly positive, parameters α1, α2 andD12, D21 are referred to as learning
and influence parameters respectively. The shocks ξt = (ξ0t, ξ1t, ξ2t)

> are assumed
to follow a tri -variate Gaussian white-noise process with E[ξt] = 0 and V[ξt] = I(3,3)

for all t, where I denotes the identity matrix. The scalar constant ε ≥ 0 takes the
role of a noise intensity. In the sequel, we will focus on two specifications of the
binary vector ι(1,3) = (ι1, ι2, ι3): while ι(1,3) = (0, 1, 1) is consistent with additive
noise, ι(1,3) = (1, 0, 0) refers to the case of parametric noise.

The feasible region for the deterministic skeleton (ε = 0) is given in the following
definition.

Definition 2.1. If α1b
2
1 + D12b

2
2 < 4pxpy, α2b

2
2 + D21b

2
1 < 4pxpy holds, then

f(S) ⊂ S where

S =

(
0,
b1
px

)
×
(

0,
b2
px

)
(4)

is the feasible phase region.

As detailed in [11] it is possible to identify sets of parameter values implying eco-
nomically meaningful trajectories with high probability. All experiments discussed
in later sections were designed such that the consumption trajectories are economi-
cally meaningful. Throughout the paper, we consider a fixed economic environment
of prices and incomes: p = (px, py) =

(
1
4 , 1
)
, b = (b1, b2) = (10, 20). Beyond that,

we assume that the adjustment of individual preferences is mainly driven by the
past consumption of an individual’s peer. The effect of the own past consumption is
weak. Thus fixing the learning parameters at low values α1 = 0.0002, α2 = 0.00052
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Figure 1. Bird’s eye view of the parameter plane D, where re-
maining parameters have been fixed at (px, py) =

(
1
4 , 1
)
, (b1, b2) =

(10, 20), α1 = 0.0002, α2 = 0.00052.

and using Definition 2.1, we derive a set of admissible values for the influence pa-
rameters as

De = {(D12, D21) | 0 ≤ D12 ≤ 0.00245 ∧ 0 ≤ D21 ≤ 0.00792}. (5)

The dynamic phenomena discussed below are associated with a subset of De.
Given its preferences and the economic environment (bi, p) at time t, individual i

has no incentive to deviate from the choice (xi t, yi t) during period t. Any trajectory
{xt}Tt=1 thus can be viewed as a sequence of T consecutive household equilibria for
the two myopic individuals considered. The units purchased of commodity y are
implicit. This interpretation holds in the deterministic as well as in the stochastic
cases. A trajectory therefore reflects dynamic consumption behavior of myopic
individuals. A trajectory that has settled on or stays close to an attractor of the
system (1) is indicative of long-run consumption behavior. If a trajectory leaves an
attractor to settle down on another one, then we refer to the associated consumption
behavior as transitory.

3. Dynamic modes of the deterministic skeleton. In Figure 1, we present a
2D-bifurcation diagram for the subset D = {(D12, D21) | 0 ≤ D12 ≤ 0.004 ∧ 0 ≤
D21 ≤ 0.016} of the parameter plane (D12, D21). The set DN = {(D12, D21) |
0.0002 ≤ D12 ≤ 0.0024 ∧ 0.007 ≤ D21 ≤ 0.008}, i.e. the rectangle formed by red
broken lines, represents the area of interest in the study at hand. DN ⊂ De is
situated close to the Northern boundary of the set De associated with economically
meaningful consumption trajectories. The region below this rectangle has been
studied extensively in [11]. The authors identify coexisting fixed points and 2-
cycles of the deterministic skeleton and analyze the transition phenomena occurring
in the context of the associated stochastic model. In our current effort, we focus
on the said rectangular region since coexisting complex attractors are found for
these parameter values in the deterministic case. In the presence of additive and/or
parametric noise these subsets of the parameter plane are predestined to give rise
to intricate transition phenomena. Seen from the economic perspective, we are
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focussing on a region of the parameter space in which noise-induced transitions
might occur between alternative types of long-run consumption behavior.

In particular, the rectangle marked by red broken lines is partitioned into pa-
rameter constellations (D12, D21) colored light blue, light green, and white. Light
blue (green) indicates that the deterministic map (1)(ε = 0) possesses a fixed point
such that the long-run consumption of the high-income individual 2 is at least (at
most) twice as high as the consumption of individual 1. So far, the white region
constitutes terra incognita an area of unknown and uncharted complex long-run
dynamics.

3.1. Characterizing DN by 2D-bifurcation diagrams. A first glimpse at the
various dynamic modes existing over the subset DN is provided by Figure 2. The
graph in Figure 2 shows a selection of dynamical modes that can be observed in the
(D12, D21) plane along with the prominent Neimark–Sacker bifurcation curve NS.
This curve is constituted by those geometric loci at which the stable fixed point
becomes an unstable focus and a closed invariant curve (Γ) emerges. While in-
side the white partition, quasi-periodic attractors and high-period attracting cycles
dominate, the said area is interspersed with periodicity regions of attracting cycles
of low periods. Points (D12, D21) lying in an intersection of periodicity regions are
associated with the coexistence of attractors.

Figure 2. Bifurcation diagram for DN with (px, py) =(
1
4 , 1
)
, (b1, b2) = (10, 20), α1 = 0.0002, α2 = 0.00052. NS in-

dicates the Neimark-Sacker bifurcation curve related to the fixed
point. SN3 curve gives the loci at which a saddle 3-cycle is born
together with the attracting 3-cycle (C3) via a saddle-node bifur-
cation. NS3 designates the Neimark-Sacker bifurcation curve of
the 3-cycle. The horizontal line through D21 = 0.0075 indicates
the interval of parameter values for which our study of transitions
between coexisting attractors focuses on. The NS and NS3 curves
are crossed twice at ? (red star) and ? (green star). Also the saddle
node bifurcation curve SN3 is intersected twice. The intersection
points are indicated by • (blue circles). Related details are revealed
in Figure 3.

Some of the periodicity regions Πk show the characteristics of resonance tongues
(Arnold or mode-locking tongues).
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Definition 3.1. Let Πk denote a connected set of parameter values issued from a
Neimark-Sacker bifurcation curve such that for every p = (D12, D21) and p ∈ Πk,
there exists a stable period k-cycle. Πk is called a period k-resonance tongue.

In Figure 2, a resonance tongue Π7 is clearly visible. 1 For parameter values suf-
ficiently close to the bifurcation curve NS, the boundary of a tongue is constituted
by those points in parameter space at which the k-periodic points disappear in the
course of a saddle-node bifurcation. The nature of the boundary might change at
parameter values distant from the Neimark-Sacker curve. There may, for instance,
exist the boundary related to a flip bifurcation of the stable k-cycle. Consequently,
the k-cycle may exist outside Πk.

Only periodicity regions up to order k ≤ 20 are indicated in Figure 2. Many of
the regions have the characteristic shape of a sickle or a reaping hook. Most of them
do not originate on the NS line. Those periodicity regions are related to a pair of
k-cycles born via saddle-node bifurcations (typical for smooth maps). Consider, for
example, the case of the 3-cycle associated with the periodicity region colored in red.
The curve SN3 in Figure 2 indicates the occurrence of the saddle-node bifurcation
in the course of which a saddle 3-cycle is born together with the attracting 3-cycle
C3. Eventually, this 3-cycle undergoes a Neimark-Sacker bifurcation at a point
belonging to the curve NS3. Note also, that the red periodicity region has a positive
intersection with both the white and the light blue area. Thus, over and above the
coexistence between a closed invariant curve and a 3-cycle, we might find 3-cycles
to coexist with stable fixed points. Moreover, the line segment {(D12, D21) | D12 >
0.00219 ∧ D21 = 0.0075} is intersecting a light-green area indicative of another -
unrelated - fixed point. Given the scope of the paper, we will not discuss this case
in the remainder.

Note that, in the course of our numerical experiments, we observed that for
p ∈ Πk all sample trajectories were attracted to the respective k-cycle. In fact,
close to the Neimark-Sacker bifurcation a saddle-node connection formed by the
stable invariant set of the saddle k-cycle exists, and on the curve the trajectories
converge to the related attracting cycle.

There exist points p such that p ∈ Πk and p ∈ Πl, k 6= l, inside the white par-
tition. Apparently, the respective periodicity regions are associated with different
bifurcation events. As a consequence, one should be able to establish incidences of
observable co-existence between stable k-cycles and l-cycles over and above those
focused on in the sequel.

3.2. Characterization of coexisting attractors. This largely descriptive sec-
tion reveals details about the coexisting attractors on the basis of 1D bifurcation
diagrams exhibited in Figure 3.

The black solid line in Figure 2 through D21 = 0.0075 signifies the interval in
the parameter plane on which we will concentrate our investigation of transitions
between coexisting attractors. Fixing the influence of person 1 on individual 2 at
0.0075, we allow the influence of person 2 on individual 1 to vary over a fine grid of
parameter values between 0 and 0.00245. At each grid point, a sample series {x}Tt=0

with adequately chosen (x1,0, x2,0), is generated. To remove transient effects, only
the last observations {x}Tt=T−τ with T = 2000 and τ = 200 are plotted against
the respective parameter value. The resulting 1D-bifurcation plot should identify

1For conceptual details and/or examples see for instance [4] and [21] respectively.
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(a) (b)

Figure 3. For D21 = 0.0075, we give bifurcation diagrams for
0 ≤ D12 ≤ 0.00245 linked to the horizontal black line in Figure
2 (a) and an enlargement (b) focussing on the interval 0.00145 ≤
D12 ≤ 0.001975 over which two attractors coexists.

attractors of the underlying system. By following this approach we generated two
attractor images and combined the objects in Figure 3. The figure suggests that

Dms = {(D12, D21) | 0.00145 ≤ D12 ≤ 0.001975 ∧D21 = 0.0075} (6)

defines the interval of values for which bi-stability prevails.
Seen from an economic perspective, two types of alternative long-run consump-

tion behavior exist. For example, there exists a window of D12 values such that
the long-run consumption behavior is described by motion on a closed invariant
curve Γ or alternatively by a 3-cycle C3. For increased D12, one type of long-run
behavior is described by a closed invariant curve Γ and the alternative by a closed
invariant curve consisting of three pieces Γ3. For D12 values close to 0.001975, a
long-run steady state consumption E coexists with a C3. Which of the two long-run
behaviors will be observed in each case depends on which basin of attraction an in-
dividuals’ initial endowment (x10, x20) is lying. Thus, in the area of the parameter
space denoted as Dms, the system clearly exhibits path dependence. Having ac-
counted for the various types of coexisting attractors, we will characterize the blue
and the red attractors in detail.

The main point here is that for every level of influence D12 ∈ (0.00145, 0.001975)
the long-run behavior adopted by the consumers depends on where the consumption
process started: in the basin of the blue attractor or in the basin of the red attractor.
For the deterministic skeleton, we can identify several cases of coexisting long-run
behavior (Γ, C3), (Γ, Γ3), (E, Γ3) and (E, C3) on the basis of Figure 3 alone. We
decided to single out those cases because the coexistence prevails over relatively
wide parameter windows. Thus, the chosen coexisting attractors represent robust,
observable, long-run consumption behavior.

4. Stochastic dynamics. We will now turn to the analysis of the stochastic con-
sumption system (1) with ε > 0. Our exploration focusses on the line Dms in the
parameter space for which multi-stability has been established in the subsection
3.2. In response to small perturbations, we expect the resulting random consump-
tion trajectories to leave the deterministic attractor(s) and be randomly distributed
around it (them), i.e. spend most of the time in a neighborhood of some attractor
([13]).



5856 J. JUNGEILGES, T. KASTBERG NILSSEN, T. PEREVALOVA AND A. SATOV

Figure 4. Bifurcation diagram for the case of additive noise with
ε = 0.1 (D21 = 0.0075). If the initial value (x1,0, x2,0) lies on the
deterministic blue (red) attractor, then elements of the trajectory
are colored light blue (red).

In this first approach to the stochastic case, we report outcomes of numerical
experiments involving two types of noise. The experimental results are presented in
the form of 1D-bifurcation diagrams paralleling the descriptive analysis for the de-
terministic case. The experiments show how the random trajectories are distributed
around the respective deterministic attractors, and they give a first indication for
noise-induced transitions between attractors. In the subsequent step of the analysis,
we study the sensitivity of attractors to various types of noise using the stochastic
sensitivity function approach. Spin-offs from this analysis constitute the conceptual
framework we use to study transitions occurring between various types of long-run
consumption behavior.

The outcome of the first experiment involving additive noise is illustrated by
means of the 1D bifurcation diagram shown in Figure 4. The graph was constructed
as follows: Setting τ = 200 and T = 10200 (transient time 10000) generate the 1D-
bifurcation diagram for the additive noise case. The sample trajectories for which
the initial value (x1,0, x2,0) lies on the blue attractor are colored light blue, while the
realizations of the process started on the red attractor will be colored in light red and
superimpose it on the 1D-diagram associated with the deterministic skeleton given
in Figure 3. In this way we obtain information about the domain of the (marginal)
invariant density of the stochastic consumption states (additive case) for a given
D12. Moreover, we can relate this domain to the respective deterministic attractor.

As expected, for a large non-connected range of the values of D12, the light
colored trajectories stay in the neighborhood of the deterministic attractor. The
overlay indeed covers the deterministic attractors. The situation is clearly different
for {(D12, D21) | 0.001748 ≤ D12 ≤ 0.001975 ∧D21 = 0.0075)}. For this interval of
D12 values, the stochastic trajectory tracks the deterministic blue attractor closely.
After a transient phase, the light red trajectories started on the red attractor, seem
to have settled in the neighborhood of the blue attractor. Thus, the outcome of
the experiment indicates that transitions from the Γ3 to the blue attractor (Γ or E
or cycles) are a likely event. Note that there exists a small right neighborhood of
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Figure 5. Bifurcation diagram for the case of parametric noise
with ε = 0.1 (D21 = 0.0075). If (x1,0, x2,0) lies on the deterministic
blue (red) attractor, then elements of the trajectory are colored
light blue (red).

the bifurcation point such that for D12 ∈ (0.00145, 0.00145 + δadditive) the light red
trajectories started on the stable 3-cycle converges to Γ. 2

At the given noise intensity of ε = 0.1, the individuals’ stochastic consumption
trajectories will stay close to the respective deterministic blue and red attractors
for D12 < 0.001748. In a sense, the behavior in the case of weak additive noise,
will resemble the long-run behavior of the deterministic case. If the influence of
consumer 2 on 1 exceeds this threshold, then the consumers whose initial endowment
with commodities was such that their long-run behavior is described by a motion
on Γ3 or C3 eventually change their behavior. From a certain t on, their long-run
demand for x is distributed on Γ or settles on a stochastic fixed point. These types
of transitions, are going to be dissected below.

Next, we turn to the experiment involving parametric noise. Its outcome for
ε = 0.1 is shown in Figure 5. The diagram was constructed according to the
principles underlying the construction of Figure 4 in the additive-noise context.
Since the scales of the axes are identical across plots, a direct comparison of the
attractors under the alternative stochastic specification is supported. Thus, we will
discuss the outcome of the parametric noise scenario in comparison to the additive
case.

For D12 > 0.0005 the spread of the consumption levels tends to be larger in the
parametric case than in the additive case. In this area of the parameter space, para-
metric noise implies the higher long-run consumption volatility. Transitions from Γ
(or higher order cycles) to C3 or Γ3 occur for values of D12 ∈ (0.00157, 0.001706).
This type of transition did not occur in the additive case at the noise intensity of
ε = 0.1.

As in the additive case, transitions from Γ3 or C3 to blue attractor are likely to
occur, yet the window of D12 values for which these transitions are likely events

2This observation can be explained as follows: We consider an interval of points, which is close
to the fold bifurcation giving rise to a pair of 3 cycles. The basin of attraction of the attracting
3-cycle is bounded by the stable set of the associated saddle 3-cycle. Close to the bifurcation point,

the basin of attraction might be very small. Thus, even for weak perturbations the escapes from
the basin are likely.
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is wider in the parametric case than in the additive case. Finally, for D12 in the
right-neighborhood of the bifurcation point (0.00145, 0.00145+δparam) the light red
trajectories converge to the blue attractor (see footnote 8). A comparison of the
respective graphs suggests that δparam > δadditive, i.e. the phenomenon occurs for
a wider window of influence levels D12 under parametric noise.

Thus, the evidence exhibited in Figures 4 and 5 supports the hypothesis that - at
the noise intensity of ε = 0.1 - various types of transitions occur between coexisting
attractors. In the context of the economic model, the essence of the numerical exper-
iments is that even for weak shocks, we observe noise-induced transitions between
long-run consumption behaviors. These changes in long-run behavior typically im-
ply changes in the volatility of consumption.

To summarize, in the cases considered above, transitions between the respective
co-existing attractors are idiosyncratic to the stochastic setting irrespective of the
type of noise considered. Under the economic perspective, we thus can expect to
observe transitions between long-run consumption behaviors. In the sequel, we
clarify how such transitions occur using concepts related to deterministic dynamic
systems and spin-offs from sensitivity analysis. In particular, we reveal conditions
under which transitions between consumption behaviors become likely events.

5. Sensitivity analysis and transition. A framework facilitating the analysis
of transitions between coexisting attractors is introduced. The coarse descriptive
analysis of Sections 3 and 4 suggests that the morphology of an attractor changes
in response to weak noise. If the noise intensity increases it may possibly exceed
the basin of attraction of the deterministic attractor. In studying the causes and
consequences of such a scenario, one should benefit from a methodology suited to
analyze the effect of noise on the attractors of dynamic systems.

5.1. Sensitivity analysis for attractors. In the sequel, we rely on a semi-
analytical approach to sensitivity analysis due to [14]. To convey the concept, we
provide a sketch of the approach in the context of our model and refer the reader to
the relevant literature for details. As substantiated in Section 3 the deterministic
consumption system (1) possesses regular attractors. We focus on one of them, say
γ, for the purpose of exposition. Let xt denote a solution of the deterministic system
(1) (ε = 0). The solution of the respective stochastic system (ε > 0) is represented

as Xt ≡ xt(ε). If we consider ∆t(ε) = xt(ε)−γ and zt = limε→0
∆t(ε)
ε , then - in the

small noise limit - we can interpret Vt = E[ztz
>
t ] as an estimate of the dispersion of

random states around γ. The sensitivity of an attractor captures the variation of
the stochastic trajectory Xt around the (exponentially stable) attractor.

Over two subintervals of Dms there exists the stable steady state E of the deter-
ministic skeleton (cf. Figure 3) representing the least complex long-run consumption
behavior. In the case of this attractor γ = E one reflects the variation of the sto-
chastic trajectory Xt around the stable steady state E by means of the sensitivity
matrix W which solves W = FWF> + Q where F = ∂f

∂x (E) and Q = g(E)g(E)>,
where g denotes the smooth matrix function defined in (3) evaluated at the steady
state E. The matrix W approximates the covariance matrix of states. A Gaussian
approximation of the density of states ψ(x, ε) based on the eigenvalues µ1, . . . , µp
and eigenvectors of W can be given, where in the case at hand p = 2.

The eigenvalues are used to quantify the sensitivity of the attractor (steady
state). In the sequel λ = max(µ1, . . . , µp) constitutes the stochastic sensitivity
function (SSF) of the respective attractor. Based on the Gaussian approximation,
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Figure 6. Confidence sets for fixed point E (•) and 3-cycle C3

(•) at D12 = 0.00195, D21 = 0.0075 with trajectories superimposed
(ε = 0.1 (white), ε = 0.05 (grey))

one can deduce a confidence set C(E, ε, π) around the attractor in which, for a
given level of the noise intensity ε, the stochastic trajectory will stay with a given
probability π. 3 For details see [2, p.455]. In the case at hand, such a confidence
set takes the form of an ellipse with center E where the principle axis are related to
the eigenvalues of W . For example, the magenta colored level curve superimposed
on the state space in Figure 6 represents C(E, ε = 0.3, π = 0.99),4 the confidence
ellipse around the steady state E.

To obtain sensitivity functions for the coexisting attractors identified in the previ-
ous sections one proceeds in an analogous way. We provide a sketch of the procedure
for a closed invariant curve. Such a curve - like Γ - is constituted by infinitely many
points. The points lie dense on the attractor. One can quantify the sensitivity
of the closed invariant curve to noise by considering the sensitivity at each point
of the curve. For that purpose, one determines a hyperplane orthogonal to the
closed invariant curve at a point on the curve. Next, projections of points in the
neighborhood of the attractor onto the hyperplane are considered. The spread of
those projections quantifies the sensitivity at the given point. It is captured by a
sensitivity matrix. The eigenvalues of the sensitivity matrix summarize information
about the spread. To obtain the sensitivity function for the attractor, one carries
out the exercise for many points on the closed invariant curve. Each such point
on the curve is identified by an angle φ relative to some pole (here “center” of the
curve). The scope of this paper does not allow for an in-depth discussion of the
procedure or its application to Γ3. The intricate technical challenges are discussed,

3Since it is based on an approximation, the confidence set itself will not be exact. While
coverage probabilities are typically excellent for simple attractors, they tend to decay for more
complex attractors. An example for this phenomenon is visualized in Figure 10 (Section 7) where

the confidence C(Γ3, ε = 0.2) has a positive intersection with the immediate basin of the closed
invariant curve Γ.

4Since we use the probability level of π = 0.99 throughout this paper, the parameter π will be
dropped from the list of arguments in the sequel.
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and algorithms facilitating the calculation of the sensitivity of such attractors are
given in [1] and [2].

(a) (b)

Figure 7. The top panel shows the graph of the sensitivity func-
tion for Γ, i.e. a plot of the maximum eigenvalue (λ) of the sensitiv-
ity matrix at a point on Γ versus the angle φ identifying the point
on the attractor. The subfigures on the bottom give the confidence
sets C(Γ, ε = 0.1) at D12 = 0.00157 for additive (a) and parametric
noise (b).

Following this cursory introduction into sensitivity analysis, we will now illustrate
the approach by showing the outcome of the sensitivity analyses for two attractors:
Γ and C3. The results for the invariant curve Γ for additive and parametric noise
are shown in Figure 7. The graphs of the sensitivity functions for additive (solid
line) and parametric noise (broken line) are shown in the upper panel. Apparently,
the sensitivity of Γ is higher in the case of parametric noise - the case in which
individual 1 is uncertain about the income of individual 2. The fact, that the
dispersion around Γ is higher in the latter case, is reflected in the wider confidence
band C(Γ, ε) in subfigure 7b. The pronounced peaks in the graph of the SSF suggest
that the spread of the consumption trajectory around Γ varies considerably along
the closed invariant curve.

The same phenomenon is visible in the following example involving Γ3 at D12 =
0.0017. The SSF along with the confidence bands are exhibited in Figure 8. The
sensitivity varies along each piece of Γ3 and comparing the SSF’s for the different
pieces, we find that the spread around the red piece is considerably higher for
most segments of the curve than for the other two pieces. Again, these differences
in sensitivity are mirrored in the varying width of the confidence bands shown in
subfigures 8c and 8d. In the remainder of this section, we will argue that sensitivity
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(a) (b)

(c) (d)

Figure 8. The figure shows the attractor Γ3 at D12 = 0.0017 (a),
the sensitivity functions for Γ3 (b) as well as the related confidence
sets C(Γ3, ε = 0.1) for additive (c) and parametric noise (d).

analysis of attractors and its spin-offs can facilitate the study of transition between
attractors that coexists under the deterministic skeleton.

5.2. Transition between attractors and sensitivity analysis. The descriptive
analysis outlined in Section 3 revealed that over the subset Dms of the parameter
space deterministic multistability prevails as a robust, i.e. empirically relevant phe-
nomenon. Attractors of varying complexity coexist over relatively wide parameter
windows. The smooth boundaries of the basins of attraction for the respective at-
tractors can be approximated. In addition, the confidence sets of the respective
attractors can be approximated for given noise intensities in the stochastic setting.

As a result of noise, a trajectory that was started on a given deterministic at-
tractor and stayed close to the attractor for some time, may be driven over the
boundary of the attractor’s basin that would have been impenetrable in the deter-
ministic setting. In the sequel, we will refer to such an event as an escape. Thus,
escapes occur as “large outbursts” of noise ([7, Chapter 4]) drive the process across a
basin boundary. Such noise-induced escapes 5 are indicative of transitions occurring
between pre-determined deterministic - possibly complex - attractors. Therefore,
one has to expect that changes in the intensity of noise ε (“large outbursts” might
occur more often as the intensity of noise increases) triggers qualitative changes in
the evolution of the system.

Therefore, attractors which are stable under the deterministic skeleton may be-
come metastable under the effect of noise. Attractors for which escape events are

5The phenomenon of noise-induced escape plays an important role in, for instance, models of
chemical reactions or in work concerning superconducting devices (Josephson tunnel junction).



5862 J. JUNGEILGES, T. KASTBERG NILSSEN, T. PEREVALOVA AND A. SATOV

highly likely already at relatively low noise intensities are referred to as “shallow”
metastable attractors ([19]). 6 An analysis of transitions occurring between two
attractors would benefit from a concept measuring the “shallowness” of the attrac-
tors involved. A candidate for such a measure is the critical intensity defined as
the smallest noise intensity ε∗ for which the confidence set of a metastable attractor
coincides with the boundary of the attractor’s basin of attraction.

Definition 5.1. Let ∂B(γ) denote the boundary of B(γ), the basin of attraction of
the deterministic attractor γ. The confidence set of the attractor at noise intensity
ε > 0 is represented as C(γ, ε, π). Then, for a given confidence level π, we refer to
ε∗γ = inf{ε | C(γ, ε, π)∩ ∂B(γ) 6= ∅} as the critical noise intensity of the attractor γ.

As pointed out in Section 5.1, the confidence set C is based on an approximation
and typically one has rely on a (numerical) approximation of the boundary ∂B, ε∗•
is an approximation (or an estimate) of a true but unknown critical intensity of a
given attractor.

Since the area of the confidence set of an attractor is an increasing function of ε,
escapes - and therefore transitions - will become likely events for ε > ε∗. For noise
intensities smaller than the critical intensity the trajectories can be expected to
stay in a close neighborhood of the meta-attractor, rendering escapes (transitions)
unlikely. Since, in the case at hand, neither the basin boundaries nor the confidence
sets have an analytical representation, the critical intensities have to be obtained
numerically. Attractors with low critical intensities are referred to as “shallow”.

Thus, in the presence of noise, we need to clarify the relationship between the co-
existing attractors. So we need to enhance the coexistence notation (γ, δ) introduced
in Section 3 to capture the dynamic relationship prevailing between the attractors
at a given noise intensity ε. To indicate that transitions between the coexisting
metastable attractors γ and δ are unlikely, we use the notation (γ | δ). Should
transitions be likely, arrows indicate the direction of the probable transition(s) to
distinguish between (γ → δ), (γ ← δ), and (γ � δ).

Suppose that in the deterministic setting the features of the coexisting attractors
γ and δ depend on a bifurcation parameter θ. In the stochastic setting, we have the
additional bifurcation parameter ε. Changes in the value of the noise intensity may
lead to abrupt changes in the nature of and/or relationship between the attractors
in the pair (γ, δ). In the definition given below we identify the conditions in terms
of (ε, θ) and the critical intensities under which the logically possible transition
scenarios prevail.

Definition 5.2. Consider the bifurcation parameter θ such that (γ, δ), ε > 0 and
ε∗• as in Definition 5.1. Then

ε < inf
(
ε∗γ(θ), ε∗δ(θ)

)
⇒(γ | δ) (7)

ε > sup
(
ε∗γ(θ), ε∗δ(θ)

)
⇒(γ � δ) (8)

ε∗γ(θ) > ε > ε∗δ(θ)⇒(γ ← δ) (9)

ε∗γ(θ) < ε < ε∗δ(θ)⇒(γ → δ). (10)

The conditions under which the transition scenarios occur involve (i) global struc-
tures existing in state space for the deterministic skeleton (attractors, saddle cycle,
basins, basin boundaries) and (ii) information about the likely location of states

6The lifetime of metastable states can be determined analytically, especially in the weak-noise
limit.
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under stochastic dynamics - areas of the state space traversed by the stochastic
trajectory - i.e. confidence regions. Those are deduced on the basis of an approxi-
mation to the stationary density of states ψ(•, ε) which in turn rely on the concept
of the stochastic sensitivity function.

Definition 5.2 provides the framework under which we discuss noise-induced tran-
sitions of long-run consumption behavior in the context of model (1) over the inter-
val Dms for which the coexistence of attractors has been established in subsection
3.2. Our first approach emphasizes critical intensities (Section 6), while the second
approach (Section 7) features the state space perspective.

6. Critical intensities for coexisting attractors. The estimated critical inten-
sities of attractors coexisting for values of the influence parameter D12 ∈ Dms are
presented in Figure 9c. To facilitate the discussion/interpretation of those results,
relevant portions of the 1D-bifurcation diagrams shown in Figures 4 and 5 have been
included in Figure 9. For D12 ∈ (0.00145, 0.00173) and D12 ∈ (0.001855, 0.001974)
the estimated critical intensities are given for the respective coexisting attractors
in the cases of additive (solid lines) and parametric (broken lines) noise. For values
of the bifurcation parameter D12 ∈ (0.00173, 0.001855) only the critical intensities
for Γ have been plotted against D12. As can be inferred from Figures 9a and 9b (or
Figure 3), the closed invariant curve coexists with cycles and attractors of a more
complex form mostly over very narrow parameter windows, the resulting plot would
hardly be informative. 7 Therefore, we do not attempt to give a complete picture
over the said parameter window.

Contrasting the critical intensities of each attractor under additive and paramet-
ric noise across all segments of 9c, we conclude (i) that the critical intensity of all
attractors, i.e. behaviors, considered depends on the influence parameter D12 and
(ii) that all attractors (long-run consumption behaviors) considered so far, are more
robust in the case of additive noise than in the case of parametric noise (asymmetric
income uncertainty).

Next, we scrutinize/interpret the evidence given in Figure 9c adopting a different
comparative angle. We contrast the critical intensities for attractors coexisting in
a given parameter window and thereby demonstrate how critical intensities can be
exploited for the prediction of transition events between attractors. In particular,
we apply the framework for analyzing transitions outlined in subsection 5.2 to pairs
of coexisting attractors found in the segments marked by 1 and 2: (Γ, C3) and (Γ,
Γ3). The analysis of the cases in segments 4 and 5 largely parallels the previous
one. It is, therefore, omitted.

(Γ, C3): D12 ∈ (0.00145, 0.001681)

We have established that there exist parameter values D12 ∈ (0.00145, 0.001681)
such that a closed invariant curve Γ coexists with a three cycle C3. At a given
value of D12 a comparison of the critical intensities ε∗Γ(D12) and ε∗C3

(D12) allows
us to assess whether transitions between attractors will occur and what type of
transitions one can expect at a given noise intensity ε.

Definition 5.2 gives a condition under which transitions between metastable at-
tractors are unlikely. Adapting (7) to our case it states that if

ε < min
(
ε∗Γ(D12), ε∗C3

(D12)
)
, (11)

7The periods of these cycles are constrained to multiples of 3, since they are associated with
the Neimark-Sacker bifurcation of C3.
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(a) Additive noise, ε = 0.1

(b) Parametric noise, ε = 0.1

(c) Critical intensities

Figure 9. 1D bifurcation diagrams ((a),(b)) and critical inten-
sities for coexisting attractors (c) with additive (solid lines) and
parametric (dashed lines) noise for D12 ∈ Dms

then transitions between the two metastable attractors are unlikely.
In our numerical experiments the noise intensity equals ε = 0.1 which - ac-

cording to the evidence shown in Figure 9c - fulfills the inequality given above for
D12 ∈ (0.00145+δ, 0.001681−δ) in the case of additive noise. This explains the ab-
sence of transitions between the closed invariant curve and the three cycle over this
interval in Figure 9a. The situation is different in the case of parametric noise. The
evidence in Figure 9b suggests that there exists a window of D12 values for which
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the trajectories eventually leave the basin of the Γ to stay close to the C3. This
could have been predicted since ε = 0.1 violates inequality (11) for D12 > 0.00157.

On the other hand, for severe levels of noise, i.e.

ε > max
(
ε∗Γ(D12), ε∗C3

(D12)
)

(12)

escapes from both respective basins might occur. The scenario Γ � C3 becomes
likely, i.e. transitions in both directions will be observed.

For a wide subset of the parameter window D12 ∈ (0.00145, 0.001681) we can
identify noise levels that fulfill the inequality

ε∗Γ(D12) < ε < ε∗C3
(D12). (13)

If condition (13) holds, then Γ represents shallow consumption behavior, while C3

can be classified as a metastable consumption behavior. Therefore, the 3-cycle is a
robust phenomenon over a window of D12 values and for a range of noise intensities.
When escapes from Γ occur, the trajectory moves into the basin of the C3. This
transition is irreversible - after the escape the consumers’ behavior will be described
by a motion close to C3. Therefore, condition (13) implies the case Γ→C3. Such a
scenario has neither been documented in Figure 4 nor in Figure 5 since the noise
intensity chosen for the numerical experiments (ε = 0.1) is simply too small to
satisfy condition (13).

In the case at hand, irrespective of the type of noise, we find that the C3 is the
more robust phenomenon. The noise levels needed to induce the trajectories to
escape B(C3) are clearly higher than those necessary to trigger transitions from Γ
to the cycle. Thus, C3 represents consumption behavior that is sustainable even
under considerable environmental shocks.

In Figure 9c, close to the end points of the parameter window for which C3 exists
- close to the bifurcation points - we find levels of ε such

ε∗Γ(D12) > ε > ε∗C3
(D12). (14)

According to Definition 5.2, for such noise intensities, the transition event Γ←C3

becomes likely. A trajectory that starts on Γ will stay close to the attractor, while
consumption trajectories starting on the C3 will escape B(C3) and converge to Γ.
For the noise intensity of ε = 0.1 used in our numerical experiment, inequality (14)
holds for a range of D12 values. A window for which outcomes Γ←C3 materialize
has been identified in Figures 9a and 9b.

(Γ, Γ3): D12 ∈ (0.001681, 0.00173)

For each value of the influence parameter in this window, we find ε∗Γ(D12) >
ε∗Γ3

(D12) in the additive as well as in the parametric case. Consequently, we have
to distinguish only between 3 cases irrespective of the nature of the noise: (i) If
ε < ε∗Γ3

(D12) then (Γ|Γ3); (ii) if ε∗Γ3
(D12) < ε < ε∗Γ(D12) then Γ←Γ3; (iii) if

ε > ε∗Γ(D12) then Γ� Γ3.
In case (i) both attractors represent metastable long-run consumption behaviors.

The system is characterized by path dependence. This case is illustrated in Figure
9a which reflects the additive noise case for a noise intensity of 0.1. Over the param-
eter window scrutinized, trajectories started on Γ3 stay close to the deterministic
attractor (3 light red pieces) while the consumption process closely tracks Γ, if its
initial value lies on this deterministic attractor.

Case (ii) the 3-piece closed invariant curve represents a shallow state and, in all
likelihood, the direction of the transition from Γ←Γ3 will not be reversed. Turning
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to the parametric noise scenario captured in Figure 9b, we see that for D12 ∈
(0.001681, 0.00173) we are dealing with case (ii): the 3-piece closed invariant curve
represents a shallow state and, in all likelihood, the direction of the transition from
Γ←Γ3 will not be reversed. The noise intensity of 0.1 exceeds ε∗Γ3

(D12) (cf. the
broken red line in Figure 9c). Escapes from the basin of the three piece closed
invariant curve Γ3 tend to materialize. Once a transition event Γ←Γ3 has occurred,
the realizations of the consumption process are distributed over a neighborhood
around the Γ – indicated by the light red overlay covering the Γ. Since ε = 0.1
almost coincides with the critical intensity ε∗Γ(D12), trajectories originating on the
deterministic attractor Γ will - most likely - stay close to it.

Under case (iii), both long-run consumption behaviors are classified as metastable.
Transitions in both directions occur. We cannot demonstrate case (iii), since the
noise intensity chosen for the numerical experiment is too low. The case of the
coexisting (Γ, Γ3) will be reexamined under a state space perspective in Section 7
(cf. Figure 10). The intervals of ε values shown in Figure 9c leading to the different
dynamics are based on estimates of critical intensities. It might, therefore, further
our understanding of escaping trajectories (transitions) to show confidence sets and
immediate basins of attraction together. Thus, we adopt a state space perspective
in the next section.

7. A state space perspective of transitions. For the case of additive noise, we
reveal details of the conditions under which escapes come about and demonstrate
features of the transitions occurring at various levels of the bifurcation parameter
ε. The scenario analyzed involves two types of closed invariant curves , i.e. (Γ, Γ3)
at D12 = 0.001706 portrayed in Figure 10. After discussing a baseline situation,
we consider a sequence of increasing noise intensities and scrutinize the respective
scenarios unfolding in state space.

On the basis of the 1D-bifurcation plot shown in Figure 4 one would conjecture
that at the noise intensity of ε = 0.1 the coexisting attractors (Γ, Γ3) represent
metastable consumption behaviors. A consumption trajectory starting on Γ will
stay in its neighborhood. The same holds for trajectories originating anywhere on
Γ3. To demonstrate why transitions between the respective attractors eventually
become likely under an increase of the intensity of additive noise ε, we turn to the
state space representation given in Figure 10.

The state space representation shows the closed invariant curve Γ (surrounding
the unstable fixed point E indicated by a blue circle coexisting with a closed invari-
ant curve that consists of three pieces Γ3, each of which encompasses an element
of the now unstable C3 indicated by a red circle. In addition, we find the periodic
points of a saddle 3-cycle indicated by red triangles. Stable manifolds associated
with the periodic points constituting this saddle cycle generate the boundaries be-
tween the immediate basins B(Γ3) and B(Γ) while the respective unstable manifolds
“connect” the attractors. 8 Thus, the saddle cycle, or better the manifolds asso-
ciated with the periodic points constituting the cycle, generate a structure on the
state space that facilitates the description of evolution of the deterministic process.
The stochastic nature of the consumption process studied here, is reflected in the
boundaries of the confidence sets for a given attractor which are superimposed on

8The numerical approximations of the manifolds were obtained by tools given in [15]. Points
(states) on the part of the manifold lying inside the basin of an attractor are mapped onto the

respective attractor along the manifold.
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Figure 10. For (D12, D21) = (0.001706, 0.0075) we show the
state space representation of the coexisting attractors Γ3 (dark red
curves) and Γ (blue curve) together with their immediate basins
B(Γ3) (light red) and B(Γ) (light blue). The confidence sets are
superimposed (ε ∈ {0.1, 0.2, 0.3}). Periodic points (red triangles)
of the 3-saddle cycle are exhibited together with its stable (black
lines) and unstable (red lines) manifolds. In addition, the unstable
fixed point E (blue circle) and the unstable 3-cylce (periodic point
given by red circles) are given.

the state space. In the case of Γ3 such a set would consist of 3 confidence bands.
In Figure 10, we only mark the outer boundaries – colored in magenta, green and
blue – since those alone are sufficient to support our argument.

At the baseline ε = 0.1, we find C(Γ3, 0.1) ⊂ B(Γ3). Since almost all consumption
states will be realized inside the confidence sets (magenta colored outer boundaries)
which lie at a distance from the respective basin boundaries, it is not yet likely
to observe a consumption trajectory crossing the basin boundary to approach the
coexisting metastable attractor Γ. This situation changes as the noise intensity is
increased by 0.1.

At ε = 0.2, the transition event Γ3→Γ can be expected to materialize, since
C(Γ3, 0.2) ∩ B(Γ) 6= ∅. The intersection is still small, i.e. the noise intensity just
exceeds the respective critical intensity. At this noise level it is not unlikely to
witness escapes from Γ3 to Γ, while it is not yet probable to return to Γ3 from the
Γ. This is so, since C(Γ, 0.2) ⊂ B(Γ), i.e. the confidence set of the Γ is still a true
subset of the basin of Γ. This changes as the level of noise is increased to ε = 0.3.

Focussing on the relationship prevailing between the confidence set and the basin
of attraction for the Γ, we find that C(Γ, 0.3) ∩ B(Γ3) 6= ∅ holds. Again, the inter-
section is small, since we have chosen an ε that just exceeds the critical intensity
for an escape from Γ (cf. Figure 9 - height of solid blue line at D12 = 0.001706).
Thus, at the level of noise considered the event Γ3�Γ might materialize. Transi-
tions can occur in either direction. Both metastable consumption behaviors would
be classified as “shallow”.
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Relying on sensitivity analysis we have identified and explained the conditions
under which transitions between coexisting metastable attractors (long-run con-
sumption behaviors) will be observed. As detailed in subsection 5.1 the confidence
set for a given metastable attractor allows us to predict which area of the state
space a consumption trajectory will traverse most of the time. But so far it remains
an open question whether the prediction and/or description of a typical transition
path can be facilitated.

To discuss this problem it is constructive to draw the reader’s attention to a
condition that is portrayed in Figure 10. At the critical intensity ε∗•, the confidence
set “touches” the immediate basin at - or in the neighborhood of - one of the periodic
points (∆) of the saddle cycle. This suggests that the path taken by a consumption
trajectory during an escape and transition episode may be determined in a decisive
way by the saddle 3-cycle. 9

In the related literature, our problem of describing transition behavior, is framed
as the search for a most probable escape path (MPEP). For examples, see [17], [13]
or [19]. For a few systems it has been possible to solve the problem analytically.
[19], for instance, determine an appropriate Hamiltonian trajectory to describe the
path which the noisy system is likely to follow during an escape and transition
episode. The majority of the efforts aiming at the identification of the MPEP is
of an experimental nature. The existing research efforts converge to the findings
that (i) for weak noise, it is most likely to escape a metastable attractor, by passing
through the neighborhood of a saddle point lying on the basin boundary by defini-
tion. Moreover, (ii) the trajectory typically leaves the metastable attractor along
the direction of the associated saddle cycle’s unstable manifold.

These findings also resonate in the experiments of [11] who analyze the transitions
occurring in the case of 2-cycle coexisting with a steady state (see Figures 9, 10 in
therein). To explore whether the findings outlined above also apply to the current
more complex situation, we superimpose a single sample trajectory on the state
space representation of the case (Γ,Γ3) exhibited in Figure 10.

Figure 11 supports the claim that for complex attractors noise-induced transi-
tions are determined by the unstable manifold(s) of the saddle 3-cycle. The existing
findings lead to the conjecture that the most probable complex transition trajecto-
ries possesses an identifiable strong deterministic component. In the context of our
stochastic consumption model (1), it is a feature of the deterministic skeleton that,
in a sense, governs the consumption behavior in the transition phase.

8. Discussion and conclusion. We analyze the dynamics of the stochastic con-
sumption model (1) with levels of the influence parameter D12 and the noise inten-
sity ε being constrained to the set {(ε,D12) | ε ≥ 0 ∧ D12 ∈ Dms} for additive
as well as parametric noise. Our approach to noise-induced transition between
long-run consumption behaviors rests on information concerning dynamic modes
generated by the deterministic skeleton of (1). The key finding from this initial
stage of the analysis points to the coexistence of attractors. In particular, as the
effect of individual 2’s past consumption choices on the current preferences of the
first individual grows, the sequence of pairs of coexisting long-run consumption be-
haviors (attractors) (Γ, C3), (Γ, Γ3), (E, Γ3), and (E, C3) evolves or unfolds. Over

9Also notice that the major axes of confidence sets tend to be oriented in the direction of the
respective elements of the saddle cycle! This may be viewed as a first hint at the relevance of the

saddle cycle and its unstable manifold for the transition process.
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Figure 11. (Γ, Γ3) at (D12, D21) = (0.001706, 0.0075) with sam-
ple trajectory (single simulation run with ε = 0.2) superimposed

the parameter window considered, the complexity of the blue attractor reduces from
closed invariant curve to steady state, while the complexity of the coexisting red
attractor increases from 3-cycle to 3-piece closed invariant curve and then decreases
again to a simple 3-cycle. Thus, the influence parameter does not only affect intri-
cate characteristics of each attractor, but it also determines what types of long-run
behaviors coexist. Over the parameter region investigated the deterministic system
exhibits path dependence.

The subsequent analysis shows the consumption system looses this property even-
tually under increasing the noise intensities. But at sufficiently low levels of ε we
can establish a sequence of coexisting metastable attractors (Γ|C3), (Γ| Γ3), (E| Γ3),
and (E|C3). Under weak perturbations, the consumption process will closely track
the attractor on which it was started. Apart from small neighborhoods around the
bifurcation points lying in the window for D12 all coexisting long-run behaviors can
be classified as metastable.

For low levels of the influence 0.001468 < D12 < 0.001666 the coexisting long-run
consumption behaviors are considerably robust. In particular, C3 is more robust to
noise than the coexisting closed invariant curve. Escapes from this attractor become
likely only under significant noise levels. Under intermediate noise transitions from
a relatively simple cyclical consumption behavior to more complex behavior (motion
on a closed invariant curve) are probable. The direction of the transitions is reversed
in the neighborhood of the bifurcation points.

The situation changes drastically for higher levels of influence. For D12 >
0.0018855 the long-run behaviors associated with Γ3 and C3 become “shallow”.
Already at low noise intensities behavioral transition become likely. For noise in-
tensities in an intermediate range, trajectories started on any of the red attractors
will converge to a stochastic steady state. These qualitative statements hold irre-
spective of the type of noise considered.
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For the region of the parameter space studied, we can conclude that in a mod-
erate noise environment increased peer influence actually reduces the complexity
of observable long-run consumer behavior as more complex behavioral alternatives
become shallow. Moreover, we present some evidence suggesting that models of
transitions between complex coexisting attractors would have to rely on a strong
deterministic component linked to an existing saddle cycle.

Although the region of multistability analyzed in this paper differs from the
one scrutinized in [11], the results outlined above parallel the earlier findings. In
particular both analyses culminate in the finding that more complex attractors
become less robust phenomena as influence parameter D12 increases. In addition,
we observe that the unstable manifold of a saddle cycle plays a crucial role for
the transition dynamics. That is, our current findings support and robustify the
conclusions reached by [11].

Turning to limitations of our study, we have to acknowledge that our results
- when seen from a mathematical perspective - are not “generic” with respect to
model (1), since our investigation focuses on a narrow interval of values for influence
parameter D12 holding all other parameters fixed. In fact, as far as we know, a
complete description of the dynamics of (1) in a generic case has not been provided.
Such a description poses a challenging task for future research. Moreover, only two
types of stochastic perturbations have been considered. In future efforts, a broader
spectrum of - economically meaningful - noises could should be included.

In addition, we anticipate three future research efforts addressing problems that
arose in the course of our analysis. First of all, we need to improve the characteriza-
tion of transition processes in the neighborhood of bifurcation points. Secondly, one
should address the question of whether the framework has the potential to support
the development of criteria indicating that the system is about to enter a transition
episode. And finally, we will attempt to provide a detailed assessment of the effect
of different types of noise on the escape mechanism and the structure of the tran-
sition trajectories. The objective of providing representations of transition paths
adequately capturing the distribution of states around the unstable manifolds could
be pursued by following the experimental/numerical approach implemented in [17].
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