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Dynamic magnetic susceptibility of a ferrofluid: The influence of interparticle
interactions and ac field amplitude
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Based on numerical results of dynamic susceptibility, a simple theory of the dynamic response of a ferrofluid
to an ac magnetic field is obtained that includes both the effects of interparticle dipole-dipole interactions and
the dependence on field amplitude. Interparticle interactions are incorporated in the theory using the so-called
modified mean-field approach. The new theory has the following important characteristics: in the noninteracting
regime at a weak ac field, it gives the correct single-particle Debye theory results; it expands the applicability of
known theories valid for high concentrations [Ivanov, Zverev, and Kantorovich, Soft Matter 12, 3507 (2016)] or
large values of ac field amplitudes [Yoshida and Enpuku, Jpn. J. Appl. Phys. 48, 127002 (2009)], in accordance
with their applicability. The susceptibility spectra are analyzed in detail. It is demonstrated that interparticle
dipole-dipole interactions and an increase in field amplitude have an opposite effect on the dynamic response
of ferrofluids, so that at certain field amplitudes, relaxation processes in the system of interacting particles are
determined by the characteristic relaxation times for an ideal paramagnetic gas. The new theory correctly predicts
the dynamic susceptibility and characteristic relaxation times of a ferrofluid at high ac field amplitudes as long
as the Langevin susceptibility χL � 1, which is a complex characteristic of ferrofluid density and the intensity
of interparticle dipole-dipole interactions.
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I. INTRODUCTION

Ferrofluids are stable colloidal suspensions of one-domain
particles of ferromagnetic materials in carrier liquids [1].
Typical ferrofluids contain particles roughly 10 nm in di-
ameter, meaning that the magnetic dipole moment reorients
mainly due to Brownian rotational motion of the particle as
a whole. Smaller nanoparticles exhibit superparamagnetism,
in which the magnetic dipole moment flips through the Néel
mechanism [1,2]. The frequency-dependent magnetic suscep-
tibility χ (ω) = χ ′(ω) + iχ ′′(ω) is an important property of
ferrofluids [3,4] that forms the basis of many applications
[5–8]. For instance, the heating of a magnetic fluid with an ac
magnetic field is proportional to the imaginary (out-of-phase)
part χ ′′(ω) [9]. This has led to applications in medicine such
as localized heating (hyperthermia) and the destruction of
diseased tissue [10–15].

The dynamic magnetic susceptibility of ferrofluids has
been studied extensively, both experimentally and theoreti-
cally, and the literature is vast. From the theoretical point of
view, the dynamic susceptibility can be predicted for diluted
ferrofluids in a weak ac magnetic field by the Debye theory of
polar media [16]. An increase in the ac field amplitude leads
to significant changes in the dynamic susceptibility spectrum
[17–22], which can be theoretically described quite reliably
by the simple analytical expression proposed in [23]. Many
attempts have been made to include the effects of dipole-
dipole interactions on dynamic susceptibility [24–29]. In a
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recent work, an approach based on the so-called modified
mean-field theory [30] was developed to enable interactions
to be included in a systematic way, based on classical statis-
tical mechanics [31]. The resulting expressions in [31] for a
dynamic response of a ferrofluid to a weak ac magnetic field
have a closed analytical form and represent first-order density
corrections to the Debye susceptibility.

Among the great variety of theories, the main advantages
of the aforementioned three theories [16,23,31] are simple
analytical expressions that are easy to use for the computation
and prediction of the dynamic susceptibility of a ferrofluid.
It is worth noting that each of these theories has its own
range of applicability shown schematically in Fig. 1. The basic
elements of these theories [16,23,31] are outlined below.

A. The Debye theory

In the absence of dipole-dipole interactions and in the
presence of a weak ac magnetic field H(t ) = heiωt ĥ (h is the
amplitude, ω stands for the angular frequency, ĥ is the unit
vector in the direction of the field, and t denotes time), the
mathematical problem of computing the susceptibility spec-
trum is rather straightforward [16,32]. The result is known as
the Debye theory:

χD(ω) = χL

1 − iωτB
= χD

′(ω) + iχD
′′(ω),

χD
′(ω) = χL

1 + (ωτB)2
,

χD
′′(ω) = χLωτB

1 + (ωτB)2
. (1)
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FIG. 1. Diagram of theoretical knowledge on dynamic suscep-
tibility. The theories presented in the diagram give simple analytical
expressions for the real and imaginary parts of susceptibility in terms
of field amplitude and the Langevin susceptibility.

It is assumed that ferroparticles undergo Brownian re-
laxation only with the Brownian rotation time τB. The
zero-frequency limit of the Debye theory gives the Langevin
static susceptibility χL = μ0m2ρ/3kBT , which is proportional
to the numerical ferroparticle concentration ρ and the square
of the particle magnetic moment m; μ0 is the vacuum mag-
netic permeability, and kBT stands for the thermal energy. The
analytical expressions for real and imaginary susceptibility
(1) are quantitatively accurate for diluted ferrofluids as long
as χL � 0.1 and ξ � 1, where ξ = μ0mh/kBT is a ratio of
the interaction energy between the particle magnetic moment
and the ac magnetic field to the thermal energy kBT . The
dimensionless parameter ξ characterizes the amplitude of the
ac magnetic field.

B. Theory of the dynamic response of noninteracting magnetic
particles to an ac field of arbitrary amplitude

Approximate equations that describe the dynamic suscep-
tibility of ferrofluids at a high ac field amplitude ξ � 1 were
obtained in [23]. This theory is a modification of the Debye
equations:

χY (ω) = χY
′(ω) + iχY

′′(ω),

χY
′(ω) = χ (0)

1 + (ωτe)2
, (2)

χY
′′(ω) = k

χ (0)ωτe

1 + (ωτe)2
,

where χ (0), k, and τe are functions of the ac field amplitude
ξ ,

χ (0)

χL
= 1 − 0.0636ξ 2

1 + 0.18ξ + 0.0659ξ 2
, (3)

τe = τB√
1 + 0.07ξ 2

, (4)

k = 1 + 0.024ξ 2

1 + 0.18ξ + 0.033ξ 2
. (5)

Formulas (2)–(5) are obtained by approximating the nu-
merical solution of the Fokker-Planck equation for the
probability density of the magnetic moment orientation [23].
To solve the Fokker-Planck equation, the probability density
was represented as a series in terms of the Legendre polyno-
mials with unknown time-dependent coefficients. Substitution
of this series into the Fokker-Planck equation made it possible
to obtain recurrent relations linking three consecutive coeffi-
cients of the series. The truncation at some arbitrary order in
recurrent relations gives a closed set of differential equations,
which was solved numerically. The truncation order was de-
termined from the condition of the convergence of the solution
and depended on the amplitude of the alternating field.

Like the Debye theory, dynamic susceptibility (2)–(5) does
not take into account interparticle dipole-dipole interactions,
and it can be applied only to dilute ferrofluids with χL � 0.1.
It was shown in [23] that the analytical expressions (2)–(5)
are quantitatively correct for an ac field amplitude of at least
ξ � 20.

C. First-order modified mean-field theory

Interparticle dipole-dipole interactions lead to significant
changes in the dynamic susceptibility spectrum [28,29,33,34].
Recently, a new dynamic theory of interacting dipolar parti-
cles in the Brownian-relaxation regime was proposed [31]:

χI (ω) = χI
′(ω) + iχI

′′(ω),

χI
′(ω) = χD

′(ω) + 1
3 ([χD

′(ω)]2 − [χD
′′(ω)]2),

χI
′′(ω) = χD

′′(ω)
(
1 + 2

3χD
′(ω)

)
. (6)

The theory is based on the so-called modified mean-field
approach. In a low-concentration, noninteracting regime, it
gives the correct Debye theory results. At the zero-frequency
limit, it yields static susceptibility corresponding to the first-
order modified mean-field theory χ = χL(1 + χL/3). The
theory was tested on the results of Brownian-dynamics sim-
ulations [35] and experimental data [36]. It was demonstrated
that the theory (6) correctly predicts the dynamic susceptibil-
ity of ferrofluids as long as χL � 1 and the ac field amplitude
is ξ � 1.

Thus, the known experimental and theoretical results of
the dynamic response of a ferrofluid to the ac magnetic field
demonstrate the strong dependence of the susceptibility spec-
trum on the amplitude of the ac field and on interparticle
dipole-dipole interactions. The problem is that the region of
high ac field amplitudes and the Langevin susceptibility, in-
dicated in Fig. 1 by a question mark, is still an unexplored
area. There are no simple analytical expressions to predict dy-
namic susceptibility in this range of parameters, which is most
interesting for the application of ferrofluids. The aim of the
current work is to fill this gap by describing the effects of both
interparticle dipole-dipole interactions and field amplitude on
dynamic susceptibility and relaxation processes in ferrofluids.

II. MODEL AND NUMERICAL ALGORITHM

A. Model and basic properties

The ferrofluid is modeled as an ensemble of N spherical
single-domain magnetic particles with equal diameters

044604-2



DYNAMIC MAGNETIC SUSCEPTIBILITY OF A … PHYSICAL REVIEW E 104, 044604 (2021)

d , dispersed in a liquid. The direction of the
ith magnetic moment is the vector mi = mm̂i =
m(sin θi cos ϕi, sin θi sin ϕi, cos θi ). The position of the ith
particle center is defined by coordinates of the radius-vector
ri = rir̂i = ri(sin ζi cos ψi, sin ζi sin ψi, cos ζi ). To avoid
demagnetization corrections, we chose a sample container
shaped like a highly elongated cylinder with radius R and
volume V aligned along the laboratory Oz axis; the applied
ac magnetic field H = h cos(ωt )Ĥ is in the same direction,
Ĥ = (0, 0, 1). The internal macroscopic field inside the
sample is equal to the external magnetic field H, and the
interaction energy UH (i) between the ith particle magnetic
moment and the magnetic field can be written in the Zeeman
form

UH (i) = −μ0(mi · H) = −μ0mH cos(ωt ) cos θi. (7)

The interparticle dipole-dipole interaction is

Ud (i, j) = −μ0m2

4πr3
i j

[3(m̂i · r̂i j )(m̂ j · r̂i j ) − (m̂i · m̂ j )], (8)

which depends on the distance between the centers of two
ferroparticles ri j = r j − ri = ri j r̂i j and the mutual orientation
of their magnetic moments.

Since the Néel relaxation time in the dynamics of single-
domain particles in a liquid is much longer than the Brownian
relaxation time, we assume that particles undergo Brownian
relaxation only. Due to the symmetry of the system, the ori-
entation of each magnetic moment need only be described
with the polar angle θi. The rotational motion of the magnetic
moment of the randomly chosen particle (with number 1,
for example) is described by the probability density W =
W (t, x), x = cos θ1, which is a solution of the Fokker-Planck
equation:

2τB
∂W

∂t
= ∂

∂x

[
(1 − x2)

(
∂W

∂x
+ W

∂U

∂x

)]
, (9)

where U is the potential energy of a dipole in units of the ther-
mal energy kBT . W (t, x) satisfies the normalization condition:

∫ 1

−1
W (t, x)dx = 1. (10)

In the absence of interparticle interactions [as denoted by
the ideal case (id)], the potential energy of a randomly chosen
dipole (with number 1) in units of kBT is simply

U = Uid(1) = UH (1)

kBT
= −ξx cos(ωt ). (11)

To take into account dipole-dipole interactions, we follow
the earlier work of Ref. [31], where single-particle energy
Uid(1) was extended by incorporating dipole-dipole interac-
tions on the basis of the first-order modified mean-field model
[30,31]:

U = Uint(1) = 1

kBT
(UH (1) + ρ〈Ud (1, 2)W id(2)(1, 2)〉2),

(12)
where W id(2) = W id(t, x2) is the orientational probability for
the magnetic moment of particle 2 in an ideal (noninteracting)
system. The Heaviside step-function (1, 2) describes the

impenetrability of two dipolar particles. The angular brackets
denote averaging over all possible orientations and positions
of particle 2:

〈Ud (1, 2)W id(2)(1, 2)〉2 =
∫

dm̂2

∫
d r̂2Ud (1, 2)W id(2).

(13)

∫
dm̂2 = 1

4π

∫ 1

−1
dx2

∫ 2π

0
dϕ2,

∫
dm̂2 · 1 = 1,

∫
d r̂2 = lim

R→∞

∫ 2π

0
dψ2

∫ π

0
sin ζ2dζ2

∫ R/ sin ζ2

d
r2

2dr2,

∫
d r̂2 · 1 = V.

Here the integral over d r̂2 corresponds to the averaging
over all possible positions of the 2th particle inside the sample
volume V taking into account its cylindrical shape, and R has
a meaning of the cylinder radius, which is infinitely larger
than the particle diameter d in the thermodynamic limit. The
cylindrical shape of the container allows us to avoid demag-
netization corrections, which is important only in the case of
interacting particles. To take into account the excluded volume
occupied by the first particle, we use the particle diameter d
in the lower limit of integration with respect to the variable
dr2 (r2 is the distance between centers of particles 1 and 2).
Substitution of the result of the integration (13) into Eq. (12)
gives

U = Uint(1) = −
[
ξ cos(ωt ) + χL

2

∫ 1

−1
W id(t, x2)x2dx2

]
x.

(14)

This potential is first order in χL, which is a complex char-
acteristic of ferrofluid density and the intensity of interparticle
dipole-dipole interactions. It should be noted that the model
(9), (10), and (14) corresponds to a monodisperse ferrofluid.
The direct application of this model to experimental results is
complicated by the polydispersity of real ferrofluids. Never-
theless, the extension of this model to the polydisperse case is
possible, and it was done in [36] for the case of small ampli-
tudes of the ac field. Additionally, it was shown in [36] that
the results of the polydisperse theory are in good agreement
with experimental data in a wide temperature range. In this
work, we restrict our consideration of the monodisperse case,
where the effects of interactions are more pronounced than in
a polydisperse ferrofluid. It is worth noting that in Ref. [35]
the monodisperse model (9), (10), and (14) showed a good
agreement with the data of the Brownian dynamic computer
simulation for the case of small amplitudes of the ac field.

The magnetization M is determined by the one-particle
probability density W (t, x):

M(t ) = ρm
∫

dm̂1(m̂1 · Ĥ)W (t, x) = ρm

2

∫ 1

−1
xW (t, x)dx.

(15)
The real χ ′(ω) and imaginary χ ′′(ω) parts of dynamic

susceptibility are defined as the first term in the Fourier series
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of M(t ):

χ ′(ω) = ω

πh

∫ 2π
ω

0
M(t ) cos(ωt )dt,

χ ′′(ω) = ω

πh

∫ 2π
ω

0
M(t ) sin(ωt )dt . (16)

B. Numerical method

The Fokker-Planck equation can be solved exactly in some
cases. Usually, the numerical solution of the Fokker-Planck
equation is based on the expansion of the unknown func-
tion W through a series in terms of eigenfunctions and the
numerical calculation of the finite number of terms in this
series. The number of terms that must be taken account for
the correct result depends on the parameters of the system and
cannot be determined in advance. This means that the error
of approximation can be underestimated. In the current work,
the finite-difference scheme is used for the direct numerical
solution of Eq. (9). This scheme was first proposed in [37] for
solving convection-diffusion problems. In [37], the criteria of
convergence of the numerical approximation to the solution
were also proved. Since the first term on the right-hand side
of Eq. (9) can be considered as a diffusion term and the
second is a convection term, the numerical algorithm [37]
can easily be carried over to the solution of Eq. (9). The
advantage of this method is numerical stability even when the
convection term predominates in the Fokker-Planck equation.
The numerical algorithm proposed in [37] has already been
successfully applied by some of the current authors to solve
the Fokker-Planck equation to describe the behavior of im-
mobilized single-domain magnetic particles [38]. The basic
elements of this algorithm are outlined here.

The two-dimensional space (t, x) was split into a uniform
grid {(tk, xi )| tk = tk−1 + ht , xk = xk−1 + hx, t0 = 0, x0 =
−1 + hx/2} with a finite number of nodes. ht , hx determine
the grid cell size in t and x directions. Indexes k and i vary
from 0 to their final values Nt = Tf /ht , Nx = 2/hx − 1 cor-
respondingly, where Tf is the final moment of time in the
calculation. Let us also use the notation Wk,i = W (tk, xi ). The
discrete form of Eq. (9) is

exp(−δ ht ) Wk,i − Wk−1,i

ht
+ (C2 + D + δ)[exp(−δ ht ) Wk,i]

= 0, i = 0, . . . , Nx. (17)

D and C2 are discrete operators for diffusion and convec-
tion terms correspondingly:

DWk,i = 1

h2
x

[
− f

(
xi + hx

2

)
(Wk,i+1 − Wk,i )

+ f

(
xi − hx

2

)
(Wk,i − Wk,i−1)

]
,

f (x) = (1 − x2),

C2Wk,i = 1

2hx

[
v

(
t∗, x + hx

2

)
(Wk,i+1 + Wk,i )

]

− 1

2hx

[
v

(
t∗, x − hx

2

)
(Wk,i + Wk,i−1)

]
,

t∗ = tk+1 + tk
2

, v(x) = ∂U

∂x
(1 − x2).

In Eq. (17), δ can be considered as a regularization parame-
ter used to make the numerical scheme unconditionally stable:
it is equal to 1

2 max |v′
x|. In our calculations, δ = ξ was used

for both interacting and noninteracting cases.
At every t = tk , Eq. (17) is a set of linear algebraic equa-

tions in unknown variables Wk,0,Wk,1, . . . ,Wk,Nx which are
found through the tridiagonal matrix algorithm. To satisfy
condition (10), normalization is carried out:

W norm
k,i = Wk,i

hx
∑Nx

i=0 Wk,i

,

therefore

hx

Nx∑
i=0

W norm
k,i = 1.

The magnetization and dynamic susceptibility are deter-
mined by formulas (15) and (16), where the integrals of
the discrete function W norm

k,i are calculated via the trapezium
method.

C. Numerical algorithm testing

To validate the numerical algorithm and methodology, cal-
culations were first run for the noninteraction system with
potential energy (11). The numerical calculation was carried
out on a grid with size ht = 0.001 and hx = 0.01. The suscep-
tibility spectra of four simulated systems at a dimensionless ac
field amplitude of ξ = 0.01, 1, 5, and 10 are shown in Fig. 2,
as well as in theories (2)–(5). The Debye theory results from
Eq. (1) are also represented for the weak ac field ξ = 0.01.
The agreement between the numerical results and theories is
excellent.

Figure 3 shows the dynamic susceptibility for systems
with interactions in the weak ac field ξ = 0.01 at Langevin
susceptibilities of χL = 0.1, 0.5, 1, and 2. The numerical
results are compared with predictions from the first-order
modified mean-field theory [Eq. (6)] and for the diluted
system χL = 0.1 with the Debye theory [Eq. (1)]. The
numerical solution is accurate over the full range of the
Langevin susceptibility χL � 2 at a low amplitude of the ac
field.

These results show that the numerical algorithm and size
grid are all sufficient for obtaining reliable results. It is also
worth noting here that an increase in the field amplitude ξ and
an increase in the Langevin susceptibility χL affect the sus-
ceptibility spectrum in different ways: an increase in the field
amplitude leads to a decrease in the susceptibility and a shift
to the right of the maximum of the imaginary part (Fig. 2);
an increase in the Langevin susceptibility causes the reverse
reaction—the susceptibility increases, and the maximum of
the imaginary part shifts to the left (Fig. 3). These two ef-
fects compete with each other when high field amplitudes and
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(a) (b)

(c) (d)

FIG. 2. The susceptibility spectra χ (ω)/χL of noninteracting particles at (a) ξ = 0.01, (b) ξ = 1, (c) ξ = 5, and (d) ξ = 10. The points
are from numerical calculations; solid lines are from the Yoshida and Enpuku theory [23] [Eqs. (2)–(5) in this paper]. The Debye theory (1) is
shown by the dashed line only in the range of its applicability for the weak ac field ξ = 0.01.

interparticle interactions are taken into account simultane-
ously. This will be demonstrated in Sec. III.

D. New theory

To obtain a simple analytical expression for the dynamic
susceptibility of interacting particles in the ac field at an arbi-
trary amplitude, the method proposed by Yoshida and Enpuku
[23] is used. Dynamic susceptibility is presented in form (2),
where χ (0) is the value of the real part of the susceptibility
at low frequencies, 1/τe is the position, and [kχ (0)/2] is the
maximum value of the imaginary part of the susceptibility. In
general, χ (0), τe, and k are functions of ξ and χL. Forming
analytical expressions for χ (0), τe, and k, the dependence on
the Langevin susceptibility was taken into account up to χ2

L
using the approximations proposed in [31]. The analytical de-
pendence on ξ was similar to [23], but the coefficients before ξ

were unknown. To determine them, the least-squares method
was used: the numerical values χ (0), τe, and k for a system
with χL = 0.4 were approximated via analytical expressions
with unknown coefficients. As a result, the following ana-
lytical expressions for dynamic susceptibility were obtained.

These formulas take into account interparticle interactions and
a dependence on the field amplitude:

χ (ω) = χ ′(ω) + iχ ′′(ω),

χ ′(ω) = χ (0)

1 + (ωτe)2
, (18)

χ ′′(ω) = k
χ (0)ωτe

1 + (ωτe)2
,

χ (0) = χL

(
1 + χL

3

)(
1 − 0.101ξ 2

1 + 0.276ξ + 0.104ξ 2

)
, (19)

1

τe
= 1

τB

√(
1 − χL

3

)2
+ 0.076ξ 2, (20)

k = 1 + 0.027ξ 2

1 + 0.102ξ + 0.047ξ 2
. (21)

It is worth emphasizing that the new theory (18)–(21) was
determined on the basis of numerical results for a system with
the Langevin susceptibility χL = 0.4. In what follows, it will
be shown that expressions (18)–(21) are valid for systems with
other values of χL.
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(a) (b)

(c) (d)

FIG. 3. The susceptibility spectra χ (ω) of interacting particles in the weak ac field ξ = 0.01 with (a) χL = 0.1, (b) χL = 0.5, (c) χL = 1,
and (d) χL = 2. The points are from numerical calculations, while the solid lines are from the Ivanov et al. theory [31] [Eq. (6) in this paper].
The Debye theory is shown by the dashed line only in the range of its applicability for the diluted system with χL = 0.1.

III. RESULTS AND DISCUSSION

Figure 4 shows a comparison of dynamic susceptibility
from numerical calculations and the results of the new the-
ory (18)-(21) for particles with interactions. There are three
systems with Langevin susceptibilities χL = 0.2, 0.5, and 1
at amplitudes of the ac field 0.1 � ξ � 20. For χL = 0.2
and 0.5, the agreement between numerical and theoretical
results is excellent at all values of ξ . For χL = 1, small de-
viations are observed. In general, we can conclude that the
new theory predicts dynamic susceptibility rather well over
the range of parameters χL � 1 and ξ � 20. As we noted
before, interparticle interactions are taken into account in the
Fokker-Planck equation in the framework of the first-order
modified mean-field theory, i.e., the potential energy of a
dipole (14) has the first order in terms of the Langevin suscep-
tibility χL. This means that only pair interparticle interactions
are included in the model. Three-particle and four-particle
(and more) interactions become important in systems with
high values of χL. In [35], it was demonstrated that the
first-order mean-field approximation correctly predicts the dy-
namic susceptibility of ferrofluids as long as χL � 1. Since

the new theory is formed on the basis of the numerical so-
lution of the Fokker-Plank equation with potential energy
(14), the achieved region of validity for the new theory χL �
1 is the utmost possible at this level of approximation. It
is seen in Fig. 4 that for each value of χL, increasing the
field amplitude leads to a decrease in susceptibility and a
shift to the right of the maximum of the imaginary part
χ ′′(ω). The latter reflects a decrease in the characteristic re-
laxation time. So, increasing the field amplitude promotes
a speed-up of the orientation relaxation of particles in the
system.

The role of interparticle interactions in the dynamic sus-
ceptibility of ferrofluids is presented in Fig. 5 for a system
with χL = 0.5. The solid lines are from the new theory
that takes into account interparticle interactions; the points
are from Eqs. (2)–(5) for a noninteracting system. For each
value of the ac field amplitude ξ , interparticle interactions in-
crease dynamic susceptibility, reflecting stronger orientational
correlations between particles and the growth of collective
orientational dynamics. Besides, the lower the amplitude of
the field, the greater the difference between the susceptibility
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. The real χ ′(ω) and imaginary χ ′′(ω) parts of the susceptibility of interacting particles with (a),(b) χL = 0.2; (c),(d) χL = 0.5;
(e),(f) χL = 1. All the graphs show the dynamic susceptibility at ac field amplitude ξ = 0.1, 2, 6, 8, 10, and 20. The points are from numerical
calculations, while the solid lines are from the new theory (18)–(21).

of the interacting and noninteracting systems. When ξ � 3,
the peak frequency for an interacting system is lower than for
a noninteracting system. In this case, the decreases in peak
frequencies signal the onset of dipolar nose-to-tail correla-
tions and concomitant increase in the characteristic rotation

time. For an interacting system at ξ = 3, the peak frequency
is about 1, that is, the relaxation processes in the system
are characterized by the Brownian rotation time τB of the
noninteracting particles. This occurs due to a balance between
the competing dipole-field and dipole-dipole interactions. At
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(a)

(b)

FIG. 5. The real χ ′(ω) (a) and imaginary χ ′′(ω) (b) parts of
the susceptibility of interacting particles with χL = 0.5 at ac field
amplitude ξ = 0.1, 3, 6, 8, 10, and 20. The points are from the
Yoshida and Enpuku theory [23] [Eqs. (2)–(5) in this paper]. The
solid lines are from the new theory [Eqs. (18)–(21)].

ξ = 0.01, the peak frequency of interacting particles is less
than 1: this is the effect of interparticle interactions. At ξ � 6,
the peak frequencies are more than 1 and have almost the
same value for both interacting and noninteracting particles at
each value of ξ . This is because the dipole-field interaction
dominates over the dipole-dipole interaction at a high-field
amplitude.

Figures 6 and 7 show the peak frequency of the imag-
inary susceptibility and the low-frequency behavior of the
real susceptibility in detail. The peak frequency character-
izes relaxation processes. In an ideal system, the rotation
of a particle is determined by Brownian rotation time τB =
πηd3/2kBT , which depends on particle size, temperature,
and the viscosity of medium η. In the Debye theory, the
maximum of the imaginary susceptibility is always achieved
at the dimensionless frequency ω∗τB = 1. The intrinsic fre-
quency of particle 1/τB coincides with the frequency of the
ac field ω∗, while the imaginary susceptibility demonstrates
resonance. An increase in the amplitude of the ac field and/or
interparticle interactions changes the characteristic relaxation

(a)

(b)

FIG. 6. The ratio τB/τe as a function of (a) ac field amplitude
ξ , and (b) the Langevin susceptibility χL . The lines are from the
new theory (20). The points are from the reference theories: (a) the
Yoshida and Enpuku theory [23] for noninteracting particles [Eq. (4)
in this paper]; (b) the Ivanov et al. theory [31] for interacting particles
in a weak ac field [Eq. (6) in this paper].

time of the particle by effective time τe. In such systems,
the maximum of the imaginary susceptibility is reached at
ω∗τe = 1. Consequently, the peak frequency in the interact-
ing system ω∗τB = τB/τe clearly demonstrates a deviation of
the effective relaxation time τe from the Brownian rotation
time τB.

The lines in Fig. 6(a) show the ratio τB/τe as a function of
the ac field amplitude ξ from the new theory (20). At χL =
0.01, interparticle interactions are weak, so the new theory
almost coincides with the case for noninteracting particles in
Eq. (4) [points in Fig. 6(a)]. An increase in the field amplitude
leads to a significant increase in τB/τe (about three times
when ξ changes from 0 to 10). In contrast, an increase in the
Langevin susceptibility at a constant field amplitude decreases
τB/τe, which is more pronounced at low ξ . For systems with
χL = 0.5 and 1, the ratio τB/τe becomes equal to 1 at 2 � ξ �
3, signaling the balance between the dipole-dipole interaction
(which slows down the relaxation processes) and the field-
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(a)

(b)

FIG. 7. Normalized real susceptibility at low frequencies
χ (0)/χL as a function of (a) ac field amplitude ξ , and (b) Langevin
susceptibility χL . The lines are from the new theory (20). The points
are from the reference theories: (a) the Yoshida and Enpuku theory
[23] for noninteracting particles [Eq. (4) in this paper]; (b) the Ivanov
et al. theory [31] for interacting particles in a weak ac field [Eq. (6)
in this paper].

dipole interaction (which speeds them up). In the region of
ξ � 8, all lines are very close to each other, indicating that
interparticle interactions affect relaxation processes weakly
and that the field-dipole interaction mainly determines these
processes. The influence of χL on the ratio τB/τe can be seen
more clearly in Fig. 6(b), where the points are from reference
theory [31] for interacting particles in a weak ac field.

The real susceptibility at low frequencies χ (0) is equiv-
alent to the static field-dependent susceptibility. Figure 7(a)
shows ratios χ (0)/χL as functions of the ac field amplitude
ξ . χ (0)/χL decreases monotonically with increasing ξ . In the
range ξ � 15, the static susceptibility of interacting particles
χ (0)/χL almost coincides with the behavior of an ideal sys-
tem (points in the plot) because the dipole-field interactions

dominate over the dipole-dipole interactions. An alternative
visualization of the same results is given in Fig. 7(b), which
shows the static field-dependent susceptibilities as functions
of the Langevin susceptibility χL. The theoretical results show
that χ (0)/χL increases as χL increases, but that the slope de-
creases with increasing field amplitude, due to the dipole-field
interactions becoming more important than the dipole-dipole
interactions. The points in Fig. 7(b) show the dynamic theory
[31] for interacting particles in a weak ac field. It can be seen
that the new theory is in good agreement with [31] for all
values of χL � 1.

IV. CONCLUSION

The new theory obtained on the basis of numerical cal-
culations demonstrates the impact of dipolar interparticle
correlations and the ac field amplitude on the dynamic sus-
ceptibility of ferrofluids. An increase in the ac field amplitude
leads to the growth of dipole-field interactions. It was shown
that the dipole-dipole and dipole-field interactions compete
with each other, acting in the opposite way in relaxation
processes and the magnetic response of the system to the ac
field. There are two spectra characteristics that are especially
sensitive to the influence of ac field amplitudes and dipole-
dipole interactions: the low-frequency behavior of the real
susceptibility, and the maximum of the imaginary suscepti-
bility. Dipole-dipole interactions increase the low-frequency
values of the real susceptibility, which characterizes the static
magnetic response of the ferrofluid, while the ac field ampli-
tude decreases them. The shift of the peak frequency of the
imaginary susceptibility describes the relaxation processes in
the system. Dipole-dipole interactions lead to a left shift of
the maximum of the imaginary susceptibility from ωτB = 1,
signaling an overall slowing-down of characteristic relaxation
times and an increase in collective orientational dynamics. An
increase in the ac field amplitude, on the contrary, speeds up
relaxation processes. For some parameters, a balance between
these interactions is reached, and the system exhibits the be-
havior of ideal noninteracting particles: in other words, the
relaxation processes in the system are characterized by the
Brownian rotation time.

The obtained approximate formulas for dynamic suscepti-
bility predict the dynamic response of ferrofluids in a complex
manner, taking into account simultaneously the influence of
the ac field amplitude and dipole-dipole interactions. This
result is especially important for medical applications, where
the correct prediction of the working frequency range and the
ac field amplitude defines the efficiency of treatment.
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