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We study behavioral change in the context of a stochastic, non-linear consumption model with preference
adjusting, interdependent agents. Changes in long-run consumption behavior are modelled as noise induced
transitions between coexisting attractors. A particular case of multistability is considered: two fixed points,
whose immediate basins have smooth boundaries, coexist with a periodic attractor, with a fractal immediate
basin boundary. If a trajectory leaves an immediate basin, it enters a set of complexly intertwined basins for
which final state uncertainty prevails. The standard approach to predicting transition events rooted in the sto-
chastic sensitivity function technique due toMil'shtein and Ryashko (1995) does not apply since the required ex-
ponentially stable attractor, for which a confidence region could be constructed, does not exist. To solve the
prediction problemwe propose a heuristic based on the idea that a vague manifestation of a non-attracting cha-
otic set (chaotic repellor) - could serve as a surrogate for an attractor. A representation of the surrogate is gener-
ated via an algorithm for generating the boundary of an absorbing area due to Mira et al. (1996). Then a
confidence domain for the surrogate is generated using the approach due to Bashkirtseva and Ryashko (2019).
The intersections between this confidence region and the immediate basins of the coexisting attractors can
then be used to make predictions about transition events. Preliminary assessments show that the heuristic in-
deed explains the transition probabilities observed in numerical experiments.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
Keywords:
Stochastic dynamics
Multistability
Noise-induced transitions
Transient chaos
Non-attracting chaotic sets
Critical lines
Consumer behavior
1. Introduction

We study behavioral change modelled as a transition between
coexisting attractors in the context of a stochastic, non-linear consump-
tion modelwith interacting and preference adjusting agents. The notion
that consumer behavior evolves in time and the perception of consump-
tion as a social activity can be tracedback to the seminal contributions of
social scientists as [13,22,33,45,56].

These intriguing theoretical and empirical contributions motivated
economists to embrace the idea of interdependence among consumers.
Examples from the resulting strand of the consumption literature are
[1,3,12,14,17,18,34,38,39,52,57]. These research efforts tend to focus
on the existence of equilibria and their characterization.

A second strand of the literature focuses on the time evolution of
consumption pattern. Examples include the early habit formation
work due to [15,32,51], as well as the efforts by [26,37,47,50,58].
Based on [19] inwhich a general theory of experience dependent choice
was developed, [11] present a deterministic non-linearmodel of endog-
enous preference change in discrete time. In subsequent modelling ef-
forts [27–30] analyze a non-linear model of interdependent consumer
y.
s).

. This is an open access article under
choice with endogenous preference change. As subsequent modelling
efforts, for example, due to [9,21,23,25] show that complex consump-
tion dynamics may arise as a consequence of rational choice behavior.
[16] give conditions under which chaos occurs in a cash-in-advance
economy and [53] give conditions under which consumers will exhibit
a preference for variety.

Our current work on the stochastic consumption model draws in
various ways on existing research that has revealed a multitude of
noise induced phenomena. Given the scope of this paper, an account
of a few recent examples from this active research area has to suffice.
Noise-induced escapes from attractors have been analyzed by [20].
[31] introduce the concept of “noise-induced point-overspreading
route to noisy chaos” in stochastically perturbed quasi-Hamiltonian sys-
tems. The effect of noise on closed curve attractors has been studied
among others by [36,46]. The authors rely on variants of the stochastic
sensitivity analysis proposed by [48]. This technique and its spin-offs
have been implemented successfully in various research contexts by
[5–8,10]. More recent examples include [59] who discuss noise induced
extinction in amodel of bacterial infection and [55]who study the effect
of noise on attractors in a dynamicmodel of the cardiac action potential.
The same approach is utilized in [54] to study noise-induced transitions
in the context of coupled chaotic oscillators. Moreover, the stochastic
sensitivity function (SSF) methodology has been used to study the
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1 In linewith standard assumptions of household theory,we assume that an individual's
consumption expenditure for units of the two commodities exhausts its income. Thus it
suffices to describe the consumption dynamics only in terms of one commodity. Here,
we consider commodity x.
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sensitivity of attractors in economic and financial models formulated in
discrete time in [40,42].

In previous work involving a stochastic version of [28] we paid spe-
cial attention to scenarios in which the influence of other consumers'
past consumption plays a significant role in the preference adjustment
process of an individual. It turns out, that in the region of the parameter
space, which corresponds to this case, we find plenty of evidence for bi-
stability as well as for multistability. Thus, for a given set of model
parameters several long-run consumption behaviors coexist. In the
presence of shocks, transitions between the coexisting attractors
might occur leading to intricate dynamics of the consumption process.

In particular, we studied cases in which two attractors such as fixed
points, k-cycles, or closed invariant curves coexisted. In these bi-stability
scenarios the corresponding immediate basins had smooth boundaries
[41–43]. Relying on the indirect approach to the analysis of a stochastic
dynamic system, we describe the potentially existing transition scenar-
ios, and identify conditions in terms of behavioral and environmental
parameters under which such transitions are likely to occur.

The cases of bi-stability we studied so far, exhibited the following
structure. Consider an attractor Γ with an immediate basin B(Γ) that
has a smooth boundary ∂B(Γ). A transition from Γ occurs when the sto-
chastic trajectory escapes B(Γ) to move into another immediate basin,
i.e. into a set that has the same properties as the one it escaped from.
This latter aspect is not given in the case of multistability we scrutinize
in this paper.

In the current effort we study a scenario in which two fixed points
coexist with a periodic attractor. While the immediate basins of the
fixed points possess smooth boundaries, the basin boundary of the peri-
odic attractor is of a fractal nature.Whenever a trajectory escapes an im-
mediate basin it enters a set in state space that is formed by the
complexly intertwined basins of the three coexisting attractors. Once a
trajectory enters this set transient chaos [44] occurs. One typically ob-
serves a long complex temporal evolution of consumption states before
the process eventually converges to one of the fixed points or the peri-
odic attractor. The situation is characterized by final (asymptotic) state
uncertainty. In this case, we cannot apply the strategies outlined above
to predict which of the coexisting attractors will be reached.

To overcome this problem we propose an unorthodox procedure.
First, we identify a geometric object in state space which is traversed
by trajectories before they converge to one of the coexisting attractors.
Noting that features of this object could be informative with respect to
the nature of the transition process, we represent its shape (Gestalt)
using the concept of critical lines following [49]. Next, using the tech-
nique due to [4] we generate a confidence region for this object. Focus-
sing on the intersections of the confidence region with the immediate
basins of the coexisting attractors one can predict the outcome of the
transition process. Both of the techniques we instrumentalize have
been designed to work on attractors. But despite the fact that the
object of interest is not an attractor - it is in fact associated with a
non-attracting chaotic set - our heuristic can be used to predict
behavioral transitions in the context of coexisting long-run consumption
behaviors.

The stochastic consumption model is reiterated in Section 2.
Section 3 contains an in-depth discussion of the multistability scenario
of interest and a motivation for the heuristic that is introduced in
Section 4. A basic assessment of operational characteristics of the heu-
ristic is given in Section 4 and a short conclusion formulated in
Section 6 finalizes the paper.

2. The stochastic consumption model

The ideas and arguments presented in the sequel of the paper con-
cern modelling transition phenomena in non-linear stochastic systems
characterized by multistability. Our discussion involves a particular 2D
non-invertible map arising naturally in the dynamic theory of house-
hold consumption. It originates from a modelling effort by [28,29] that
2

combines the concepts of endogenous preference adjustment, learning,
and social interaction between consumers. The stochastic variant of the
system captures economic as well as the social dimension of consump-
tion in noisy environments.

The model considers two myopic utility-maximizing individuals,
indexed by i = 1, 2, who consume amounts of two non-storable com-
modities x and y. At every time period, each individual equipped with
an idiosyncratic preference order (modelled by a Cobb-Douglas type
utility function) is endowed with a fixed exogenous income bi and
faces a time-invariant price system p = (px,py). Embedded in such a
stable economic environment, each individual chooses to consume
(xi t,yi t) units of the respective commodities given the preferences
held at time t. Between two consumption decisions, individuals adjust
their preference in response to its own past consumption experience
(learning) as well as to the past consumption of the other individual.
While the original stochastic variant of the model encompasses
different types of exogenous shocks, we focus solely on the case of
additive noise in this exposition.

The demand for commodity x at time t, xt = (x1t,x2t)Τ, evolves
according to the non-linear stochastic difference equation1

xtþ1 ¼ f xtð Þ þ εξt , ð1Þ

where f represents the 2D noninvertible map f : ℝ +
2 → ℝ +

2

f xð Þ ¼

b1
pxpy

α1x1 b1 − pxx1ð Þ þ D12x2 b2 − pxx2ð Þð Þ

b2
pxpy

α2x2 b2 − pxx2ð Þ þ D21x1 b1 − pxx1ð Þð Þ

0BBBB@
1CCCCA: ð2Þ

The real, strictly positive, parameters α1, α2 andD12,D21 are referred
to as learning and influence parameters respectively and the scalar ε ≥ 0
functions as a noise intensity. The additive shocks ξt = (ξ1t,ξ2t)Τ are
assumed to follow a bi-variate Gaussian white-noise process ξt ~ MVN2

(0, I(2,2)).
The feasible region for the deterministic skeleton (ε=0) is given in

the following lemma.

Lemma1. Ifα1b
2
1 þ D12b

2
2 < 4pxpy, α2b

2
2 þ D21b

2
1 < 4pxpy holds, then f

(S) ⊂ S where

S ¼ 0,
b1
px

� �
� 0,

b2
px

� �
ð3Þ

is the feasible phase region.

The fixed economic environment of prices and incomes is specified as

p ¼ px, py
� �

¼ 1
4 , 1
� �

, b ¼ b1,b2ð Þ ¼ 10, 20ð Þ assigning the role of the

high income consumer to individual 2.
Despite this difference, the preference adjustment processes for the

individuals are qualitatively similar: for both, the main driver of prefer-
ence adjustment is the past consumption of the other individual. The ef-
fect of the individuals' own past consumption is relatively weak. We
capture such a scenario by assigning the values α1 = 0.0002, α2 =
0.00052 to the learning parameters. According to Lemma 1 this choice
allows us to vary the influence parameters over the set

De ¼ D12;D21ð Þj0 ≤ D12 ≤ 0:00245 ∧ 0 ≤ D21 ≤ 0:00792f g: ð4Þ

The parameter D21 will be fixed at 0.0073 and D12 will take the role
of a bifurcation parameter throughout the remainder of the paper.



Fig. 1. (a) 1D-bifurcation diagram for D12 ∈ (0.0022577,0.00228782) and (b) Region A magnified.
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3. Multistability

Multistability defined as the coexistence of several attractors for spe-
cific values of the bifurcation parameters has been established for vari-
ous types of deterministic and stochastic systems. Early evidence for the
use of the concept can be found in [2] in the context of perception. De-
terministic multistable systems can exhibit complex dynamic behavior
due to intricate interaction among the attractors [24]. In the case of sto-
chastic systems noise induced escapes from attractors can lead to intri-
cate transitions between attractors. Our consumption model (Eq. (1))
can be viewed as a system of coupled logistic functions with peculiar
coupling terms. There is evidence in the literature that for such a system
the phenomenon of multistability can be expected to exists.

In the course of previous analyseswehave singled out areas of the pa-
rameter space for which the deterministic skeleton of the stochastic con-
sumption system (Eq. (1)) possess possibly complex coexisting
attractors [41–43]. These past research efforts revealed (i) conditions in
terms of social influence and noise under which transitions between
attractors, i.e. alternative long-run behaviors, occur and (ii) factors
which determine the nature (dynamic/statistical properties) of the tran-
sition process. Moreover, focussing on situations of bi-stability (two
attractors coexisting) our efforts demonstrated the versatility of concepts
and tools of sensitivity analysis of attractors for the study of transitions.
Fig. 2. For D12 = 0.002271 and ε = 0 (a) Coexisting attractors xb ( ), xg ( ), and C4
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Scrutinizing the 1D-bifurcation diagram shown in Fig. 1a one readily
concludes that the sole focus on bi-stability should be transcended. For
values of the influence parameter D12 in the parameter window
(0.0022577,0.00228782) the plot establishes the coexistence of up to
four attractors. For D12 ∈ (0.0022577,0.0022612) two fixed points xb
(blue) and xg (green) coexist with an 8-cycle. Increasing D12 beyond
0.0022612, leaves us again with three coexisting attractors as xb and xg
coexist with a 4-cycle C4. Once the influence parameter exceeds D12 =
0.0022777, four attractors coexist. The two fixed points coexist with
C4 and a 5-cycle colored in red. To exemplify the challenges one is
facing when trying to analyze and model transitions between more
than two coexisting attractors, we turn to the scenario prevailing at
D12 = 0.002271 in which two fixed points coexist with the periodic
attractor C4.

To facilitate our argument, it is constructive to adopt a state
space perspective of the situation prevailing at D12 = 0.002271.
Fig. 2a shows the three coexisting attractors: the fixed points xb ( )
and xg ( ) as well as the periodic attractor C4 whose periodic points
are indicated by the symbol ★. The basins of the fixed points xb and xg
are colored in light blue and light green respectively. In the sequel, the
corresponding immediate basins are denoted as B(xb) and B(xg).
Finally, we use the color yellow to indicate the basin of the periodic
attractor. Since at the given resolution the immediate basin B(C4) is
(★), periodic points of saddle ( ) and (b) immediate basin of a periodic point.

Unlabelled image
Image of Fig. 1
Unlabelled image
Unlabelled image


2 [35] also proposed a procedure tomeasure the degree of sensitivity (uncertainty coef-
ficient α). Finding alternative operationalizations of the concepts is still a matter of ongo-
ing research.

Fig. 3. Noise-induced transition from C4 to xg and to xb (a) shown in state space and (b) in the time domain at D12 = 0.002271 with ε = 0.1.
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not visible, the immediate open neighborhood surrounding one of the
periodic points is shown in Fig. 2b.

The stable fixed point xb is born in the course of a transcritical
bifurcation. Since this bifurcation occurs at a value of D12 < 0.002 the
event is not visible in Fig. 2a. The smooth boundary of its immediate
basin ∂B(xb) is generated by the stable manifold of the 2-saddle cycle
whose periodic points are indicated by the symbol in Fig. 1 a. Initially
unstable, the fixed point xg emerges as a stable fixed point from a
subcritical-flip bifurcation at D12 = 0.00215315 (which lies outside the
window shown in Fig. 1a). Also in this case, the stable manifold of the
4-saddle cycle ( ) creates the smooth boundary of its immediate basin
∂B(xb). Finally, it should be noted that the boundaries ∂B(xb) and
∂B(xg) “touch” in a repelling fixed point represented by the symbol *.

As an inspection of Fig. 1a shows, an 8-cycle is born in a subcritical-
flip bifurcation in a small neighborhood of D12 = 0.0022577.
Subsequently “period halving” occurs as D12 assumes the value
0.0022612, leading to the periodic attractor C4. Apparently, the
way in which the boundary ∂B(C4) corresponding to the open
neighborhoods of the periodic points emerges, differs from the way in
which the smooth boundaries ∂B(xb) and ∂B(xb) materialize. The
open sets surrounding the periodic points of C4 border on a set in
which the basins of the three attractors xb, xg and C4 are complexly
4

interwoven. This apparently fractal set extends over a significant
part of the state space. Evidently, the boundary ∂B(C4) has the
characteristics of a fractal. Thus we observe a case in which the
boundaries of immediate basins of attraction belonging to different
coexistent attractors do not have the same structure.

This observation has important ramifications for the stochastic dy-
namics (ε > 0). Whenever a trajectory escapes an immediate basin, it
enters a set that is characterized by final state sensitivity. If one chooses
an initial state x0 in a subset of the state space possessing this property –
initially formulated by [35] – then the associated trajectory will con-
verge to one of the coexisting attractors (here xb, xg, or C4). Iterating
from an initial condition in an arbitrarily small neighborhood of x0, the
trajectory might reach another attractor.2 Suppose, in our scenario, the
process escapes one of the open immediate neighborhoods around a
periodic point of C4. Then we have to consider the following three
elementary events: the stochastic trajectory approaches xb (ωb), or xg
(ωg) or C4 (ωC) asymptotically. Details of two simulation runs
originating on C4 are shown in Fig. 3. In each case, the color of the

Unlabelled image
Unlabelled image
Image of Fig. 3


Fig. 4. Estimated transition probabilities bpb εð Þ (blue), bpg εð Þ (green), and bpc εð Þ (black) ver-
sus ε ∈ [0,1] for D12 = 0.002271.
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trajectory corresponds to the color of the fixed point xb or xg it
eventually approaches.

In each subfigure of panel (a), we observe the emergence of a cloud
of points (consumption states) exhibiting a peculiar shape. The trajec-
tory traverses this “object” before it enters either B(xb) or B(xg). The
respective - temporarily chaotic - time series shown in Fig. 3b,
suggests that these specific realizations of the stochastic process do
not differ significantly with respect to the time spend moving on the
object. It takes approximately 5000 iterations before convergence to xg
or xb occurs.

The observed phenomenon appears to be consistent with the con-
cept of transient chaos which is linked to the existence of a non-
attracting chaotic set in phase space of the deterministic skeleton.3

That is, a chaotic repellor – recall that the map (Eq. (2)) is non-
invertible – is embedded in the basin. Such a chaotic set is an invariant
set with Lebesgue measure 0. (So the probability for the event “a ran-
domly chosen initial condition lies on the set (chaotic repellor)” equals
0.) But if the initial condition lies close to the set, it will stay in the vicin-
ity of the set (repellor) for a long but finite time, before it eventually
converges to some asymptotic state (xg or xb in our case). Hence, non-
attracting chaotic sets cannot be observed directly. Since the trajectory
(at best) traverses a neighborhood of the set, the objects shown in
Fig. 2 will reflect a small neighborhood of the chaotic repellor. In the
case at hand we conjecture that the chaotic repellor is related to a cha-
otic attractor that disappeared in a boundary crises at D12 =
0.00217563. Since the repellor appears to us only in vague,
approximate form, we refer to the object visible in Fig. 3 as a ghost in
the remainder of the paper.

Even though we do not particularly focus on more intricate aspects
of time evolution in the sequel, two remarks seem to be in order. First
of all, in both cases (Fig. 3a) the event “convergence to a fixed point oc-
curs within 10000 iterations” materializes. For the two cases consid-
ered, the waiting times until the process enters an immediate basin
are roughly identical. But, of course, this does not have to be the case.
Even though the distribution of the waiting time is of eminent interest,
it is not essential for the point we are trying to make. Thus, to maintain
the focus of the paper we do not discuss the issue further. Second, the
longer the stochastic process traverses the object, the clearer the emer-
gence of its contours. It is manifested under the iteration of the stochas-
tic system (Eq. (1)). Moreover, visual inspection suggests that a major
part of the object is embedded in the set of complexly intertwined ba-
sins, while it also overlaps with the immediate basins B(xb) and B(xg).

Fig. 3 only shows the outcomes of two simulation runs. Of course, we
could rely on a simulation strategy to estimate the probabilities of the
elementary events ωb, ωg and ωC given above. Estimates of transition
probabilities for various levels of the noise intensity based on such an
approach are given in Fig. 4. For very small noise intensities a
trajectory starting on C4 will stay close to the periodic attractor. As ε
grows, the probabilities for reaching a fixed point increase. Once the
trajectory escapes B(C4), it is more probable to convergence to xg than
to xb for all levels of the noise intensity considered. In particular, at ε
= 0.1(0.44) in 20% (10%) of all cases the trajectory reaches xb, while
the xg is reached in about 80% (90%) of the simulation runs.

In [41–43] a strategy to analyze and describe transitions between
attractors in the case of bi-stability has been proposed and imple-
mented. In those cases, the attractors considered were born in the
course of saddle node- or Neimark–Sacker bifurcations and the bound-
aries of immediate basins were smooth. Under such circumstances the
intersections of the confidence domain of one attractor – derived on
the basis of the sensitivity function for the attractor –with the immedi-
ate basin of the other attractor would give a lead to nature (direction)
and the likelihood of transitions at given levels of the noise intensity.
3 Numerical experiments showed that traces of the structure also become visible if we
choose an initial condition for the deterministic process in the set of intertwined basin
boundaries.
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In the case of three coexisting attractors with basins that become
complexly intertwined, this strategy could only be useful to predict
the level of noise at which escapes from the immediate basins of xb
and xg and C4 become likely events. Once the trajectory enters the
set of intertwined basin boundaries, we cannot apply the strategy
outlined above to predict which of the attractors will be reached.
There is no exponentially stable attractor in sight that is required
for a standard sensitivity analysis to work. One simply lacks the
basis for which to build a confidence domain. Under this orthodox
view, there seems to be no way to explain the estimates of
transition probabilities displayed in Fig. 4. But as it will be argued
below, there exists an unorthodox approach that facilitates the
analysis of transition between coexisting attractor in the situation
portrayed above.

4. A heuristic procedure

The evidence shown in Fig. 3 demonstrates that once it has escaped
from B(C4), under the evolution of the stochastic trajectory (transients)
a ghost structure appears that shows a vague resemblance to a non-
attracting chaotic set embedded in the state space. This ghost is
definitely not an attractor in the conventional sense. On the basis of
Fig. 3 one could speculate that the appearance (gestalt) of the ghost is
related to the convergence of the process to the fixed point xb and xg.
We see that in both cases the structure comes very close to (possibly
overlaps with) the immediate basins B(xb) and B(xg).

Next, we will demonstrate that it is possible to describe or represent
the ghost by determining the minimal absorbing area based on critical
lines, i.e. by a technique usually applied in the context of chaotic
attractors. The resulting representation of the ghost can be combined
with a confidence region for the ghost (based on the sensitivity function
for a chaotic attractor) to obtain precise information concerning the in-
tersections between the ghost and the immediate basins of xb and xg at
any given level of noise ε. The extend of the intersection between the
ghost domain and B(xb) and B(xg) will enable us to predict which type
of transitions occur at given levels noise and how likely such
transition events are. That is, we will be able to explain the outcome
of the simulations shown in Fig. 4.

Letting ε=0, the map f in Eq. (1), (x01,x
0
2) = f(x1,x2) is non-invertible

since the preimage of rank 1 (x1,x2)= f(x1′,x2′) is not unique. The critical
curve of rank 1 referred to as LC is the geometrical locus of points that
have two or more coinciding rank 1 preimages that are located on the
curve of merging preimages LC−1. Suppose both component functions
of the endomorphism f are continuous and differentiable, then the curve
of merging preimages is given by LC−1 = {(x1,x2)‖J(x1,x2)|=0} where J
denotes the Jacobian of the map f. For example, in our case, the Jacobian
is given by

Image of Fig. 4


Fig. 5. At D12 = 0.002271 (a) pseudo “minimal absorbing area” for the ghost and (b) the confidence domain for the ghost C G, 0:1, 0:9972ð Þ.
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J ¼
α1

b21
pxpy

− 2
b1
py

x1

 !
D12

b1b2
pxpy

− 2
b1
py

x2

 !

D21
b1b2
pxpy

− 2
b2
py

x1

 !
α2

b22
pxpy

− 2
b2
py

x2

 !
0BBBBB@

1CCCCCA ð5Þ

and therefore

LC−1 ¼ x1, x2ð Þj x1 ¼ 1
2
b1
px

∧ 0 ≤ x2 ≤
b1
px

� �
∨ 0 ≤ x1 ≤

b1
px

∧ x2 ¼ 1
2
b2
px

� �� 	
:

ð6Þ
In any neighborhood of a point (x1,x2) ∈ LC−1 there are at least two

distinct points that are mapped into the same point. Thus f is not locally
invertible in the points lying on LC−1. Apparently, the critical set of rank
1 is the image of rank 1 of LC−1, i.e. LC= F(LC−1). The critical sets of rank
r are the images of rank r of LC−1 that is LCr−1= Fr(LC−1)= Fr−1(LC) for
r = 1, 2, … and LC0 = LC. An absorbing area A is an area in state space
whose boundary is constituted by segments of critical curves
(segments of critical curve LC and its images) such that there exists a
neighborhood U ⊃ A whose points enter in A and never leave under
the action of the map f, i.e. f(A) ⊆ A.

To generate the boundary of an absorbing area A in practice, one im-
plements an algorithm that has been suggested in the [49]. A stylized
version of the procedure, reflecting only the basic elements of the ap-
proach, is given below.

[step 1] Choose a subset (part, piece, segment) of LC−1 lying in the
area of the state space that is of interest; call it LC−1

int .4

[step 2] For r=1,2,3,…, generate images of increasing rank of LC−1
int ,

LCr−1 ← Fr(LC−1
i ) until a closed region A appears.

[step 3] Initialize LC−1
int ← A ∩ LC−1. If it can be established that the

union of the iterates of LC−1
i covers the entire boundary of A, then A is

invariant.
Faced with the structure evolving in state space shown in Fig. 3,

steps 1 and 2 of the procedure were implemented. Since it had been ob-
served that the trajectory would eventually converge to one of the
attractors xb or xg, the area occupied by the ghost could not be an
invariant set. Therefore, the 3rd step of the procedure would clearly
be irrelevant. Nonetheless, performing the first two steps, the
4 In practice, the initial segment of LC−1 typically emerges via a trial-and-error ap-
proach.

6

respective images of increasing ranks of LC−1
int describe a closed region

indicated in Fig. 5 which approximates the area containing the ghost
very well.

Despite the fact that the procedure we used so far was developed in
the context of deterministic dynamics, it successfully describes the
ghost revealed through a trajectory generated by the stochastic system
(Eq. (1)) with ε=0.1. But there should be a potential for improving the
representation even further. This potential can be exploited by consid-
ering the confidence domain associated with the region we identified.
In the case at hand, we exploit this potential by using a technique for
generating confidence domains for a strange attractor due to [4]. The
authors show how - based on the stochastic sensitivity technique, the
concept of Gaussian approximation and the notion of an absorbing
area - one can deduce a confidence set containing a chaotic attractor.
For a given noise intensity ε the stochastic states will lie in this subset
of the state space with probability π. In the sequel such confidence
sets will be denoted as

We apply (misuse) their technique to generate a confidence region
for the ghost which is, of course, not an attractor. The resulting

99.72% confidence region C G, 0:1, 0:9972ð Þ has been superimposed on
the regionG (ghost) in Fig. 5b (indicated by red broken lines). The visual
inspection of Fig. 5b suggest the following relation

μ C G, 0:1, 0:9972ð Þ ∩ B xg
� �
 �

> μ C G, 0:1, 0:9972ð Þ∩ B xbð Þf g: ð7Þ

where μ{}measures the size of the respective sets. Thuswefind, that the
probability of observing a state that belongs to G and to the immediate
basin of a fixed point is higher in the case of xg than for xb. Based on the
procedure outlined above, we predict that under a moderate noise
intensity (ε = 0.1), a transition from the long-run periodic relatively
volatile behavior (C4) to a less volatile and simpler long-run behavior
in which both individuals are consuming equal amounts of the com-
modity x is more likely than the transition to the stochastic fixed point
in which individual 2 consumes much more of x than individual 1. This
prediction is in line with the evidence exhibited in Fig. 4.

5. Basic assessment of the heuristic

According to Fig. 4 the levels bpb εð Þ, bpg εð Þ are fairly stable over noise
intensities between 0.1 and 0.4. Once ε exceeds that threshold,

Unlabelled image
Image of Fig. 5


Fig. 6. The confidence region for the ghost C G, 0:44, 0:9972ð Þ at D12 = 0.002271 resulting
from an increase in the noise intensity to ε = 0.44.
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convergence to xg (xb) becomes more (less) likely and bpg εð Þ reaches its
maximum (minimum) at 0.44.

One way to assess the performance of our heuristic is to check
whether it is able to capture this extreme situation. The confidence re-
gion C G, 0:44, 0:09972ð Þ has been calculated and superimposed on the
state space. Comparing the resulting Fig. 6 with Fig. 5b, we find that
the area of the intersection between the confidence region for the
ghost and the immediate basin of xg has increased considerably
relative to the baseline (i.e. the respective area in Fig. 5b). Moreover, it
is considerably larger than the intersection corresponding to xb. On
the basis of Fig. 6 one could still arrive at a reasonable prediction as to
which type of behavioral transition one could expect given an escape
from C4 has occurred.

On the one hand the comparison between the scenarios depicted in
Figs. 6 and 5b attests a certain degree of validity to our heuristic. But, of
course, amore rigid assessment strategy is called for. On the other hand,
the appearance of the confidence region C G, 0:44, 0:9972ð Þ in Fig. 6 pro-
vokes thoughts about the limits of our approach.

6. Conclusion

Studying behavioral change in the context of consumption we ana-
lyze transition phenomena in a non-linear stochastic consumption sys-
tem characterized by multistability. In the scenario we focus on two
fixed points coexist with a periodic attractor. We argue that in this
case an approach to prediction of transitions between attractors that ex-
ploits basins of attraction and confidence regions based on the stochas-
tic sensitivity function technique is not feasible.

Three attractors coexist such that the immediate basin of one attrac-
tor has a fractal boundary and the complement of the immediate basins
(formed by complexly intertwined boundaries) exhibits final state un-
certainty. Due to the fact that there is no exponentially stable attractor
in sight that is required for a standard sensitivity analysis approach
which relies on the interplay between attractor basins and confidence
domains for attractors. In the case at hand, one simply lacks the basis
for which to build a confidence domain.
7

We propose an unorthodox approach to predicting transition
pattern in such a case. The novel idea consists in using the ghost - a
vague manifestation of a non-attracting chaotic set (chaotic repellor) -
as a surrogate for an attractor.

Our two-step heuristic combined two techniques which are based
on critical lines. First, we apply an algorithm for generating the bound-
ary of an absorbing area due to [49] to provide a representation of the
ghost (approximate representation of the chaotic repellor). On the sec-
ond step, we use the technique for generating confidence domains for a
strange attractor due to [4] to build a confidence domain for the ghost.
The intersections between this confidence region and the immediate
basins of the coexisting attractors can then be used to make predictions
about transition events.

A first basic assessment of the heuristic rendered promising results.
In futurework,we need to evaluate the performance of the heuristic in a
more refinedway. Naturally, such an assessment should include various
other instances ofmultistability.Moreover,morework needs to be done
to understandwhy this approachworks andwhere is merits and limita-
tions lie.
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