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In this paper, the dynamic magnetic properties of an ensemble of interacting immobilized magnetic nanopar-
ticles with aligned easy axes in an applied ac magnetic field directed perpendicular to the easy axes are
considered. The system models soft, magnetically sensitive composites synthesized from liquid dispersions of
the magnetic nanoparticles in a strong static magnetic field, followed by the carrier liquid’s polymerization.
After polymerization, the nanoparticles lose translational degrees of freedom; they react to an ac magnetic
field via Néel rotation, when the particle’s magnetic moment deviates from the easy axis inside the particle
body. Based on a numerical solution of the Fokker-Planck equation for the probability density of the magnetic
moment orientation, the dynamic magnetization, frequency-dependent susceptibility, and relaxation times of the
particle’s magnetic moments are determined. It is shown that the system’s magnetic response is formed under
the influence of competing interactions, such as dipole-dipole, field-dipole, and dipole–easy-axis interactions.
The contribution of each interaction to the magnetic nanoparticle’s dynamic response is analyzed. The obtained
results provide a theoretical basis for predicting the properties of soft, magnetically sensitive composites, which
are increasingly used in high-tech industrial and biomedical technologies.
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I. INTRODUCTION

Ensembles of immobilized magnetic nanoparticles (MNPs)
are the basis for the modeling of the behavior of soft magneti-
cally sensitive materials consisting of magnetic nanoparticles
embedded in a soft polymer matrix. The rapid development
of the experimental synthesis of magnetically sensitive com-
posites over the past decade [1–8] is associated with the
perspective of their application in many high-tech industrial
and biomedical technologies [9–14]. This is because polymer
materials possess a unique combination of extensive physi-
cal properties, the considerable response of magnetic fillers
to a magnetic field, and the ability to control the electrical,
magnetic, and other characteristics of these materials with an
external field. The spatial arrangement of the magnetic filler
particles and their orientation texturing created during the syn-
thesis of the sample mainly determine the composite’s behav-
ior and the features of its reaction to a magnetic field [15–21].

Most of the known theoretical and numerical results for
the dynamic magnetic response of immobilized MNPs to
an ac magnetic field concern noninteracting samples. For
example, in [5,22–26] the dynamic magnetic properties and
characteristic relaxation times of systems of noninteracting
immobilized MNPs with aligned easy axes were studied when
the ac magnetic field was directed parallel or perpendicular
to the easy axes. The effect of interparticle interactions
on the dynamic susceptibility of immobilized MNPs with
aligned easy axes was studied in [27,28], with the ac field
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and the easy axes oriented parallel to each other. In the same
system, heat generation under the influence of a magnetic
field was studied in [29,30], while the influence of an ac
magnetic field’s amplitude on the dynamic susceptibility and
characteristic relaxation times of particle magnetic moments
was considered in [28,31].

This work is devoted to the theoretical study of the dynamic
magnetic response of a system of immobilized interacting
MNPs with the anisotropic orientation of the easy axes. We
focus on a model in which magnetic nanoparticles are equally
distributed and their easy axes are directed parallel to each
other. A sketch of the system under consideration is shown
in Fig. 1. Composites with the orientation texture described
above can be obtained from the liquid dispersion of MNPs in
a strong static magnetic field and followed by the polymer-
ization or freezing of the carrier liquid [5,14,32]. After poly-
merization, the particles lose translational degrees of freedom
and their reaction to magnetic fields occurs by Néel rotation,
when the nanoparticle’s magnetic moment deviates from the
easy axis inside the particle’s body. In this paper the features
of the reaction of such samples to an ac magnetic field directed
perpendicular to the easy axes are studied. The main focus
is the analysis of the influence of interparticle dipole-dipole
interactions and field amplitude on the magnetic properties
and relaxation processes occurring in these systems.

II. MODEL AND THEORY

We consider an ensemble of identical spherical uniaxial
MNPs uniformly distributed and immobilized in a matrix.
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FIG. 1. Sketch of the sample considered here: a frozen configu-
ration of magnetic nanoparticle positions and easy-axis orientations.
The black dashed arrows show the easy-axis direction n̂, while the
red solid arrows represent the magnetic moment orientation m̂; the ac
magnetic field H is directed perpendicular to the easy magnetization
axes.

The translational and rotational degrees of freedom of
the MPN bodies are turned off. The center position
of each ith MNP is defined by its radius vector ri =
ri(sin ξi cos ψi, sin ξi sin ψi, cos ξi ). Each MNP has a diame-
ter d and the volume vm = πd3/6. The magnetic material
of the MNPs is characterized by the bulk saturation mag-
netization Ms and the magnetic anisotropy constant K . So
the MNP magnetic moment is m = Msvm. The MNP number
concentration is ρ, while the volume fraction is ϕ = ρπd3/6.
The direction of the particle’s easy axis is defined by the
unit vector n̂, and we consider the case when all particle
easy axes are coaligned and parallel to the Oz axis; the
vector n̂ = (0, 0, 1) is identical for all particles. The mag-
netic moment is able to rotate inside the MPN body through
the Néel mechanism; the direction of the MNP magnetic
moment mi = mm̂i = m(sin θi cos φi, sin θi sin φi, cos θi ) dif-
fers from n̂. The laboratory coordinate system is presented
in Fig. 2. Magnetic moment rotation is described the Néel
energy UN :

UN (i) = −Kvm(m̂i · n̂)2 = −Kvm cos2 θi. (1)

We assume that the spherical particles are uniformly magne-
tized, so the magnetic interaction between them is described
by the dipole-dipole potential without multipole corrections
[33,34]

Ud (i, j) = −μ0m2

4πr3
i j

[3(m̂i · r̂i j )(m̂ j · r̂i j ) − (m̂i · m̂ j )], (2)

where μ0 is the vacuum magnetic permeability, ri j = ri −
r j = ri j r̂i j is the center-center separation vector, and ri j =
|ri j |, r̂i j is the unit vector.

To avoid demagnetization corrections, we assume that the
MNPs are contained in a long cylindrical tube oriented along
the Oy axis and an ac magnetic field H = H cos(ωt )Ĥ is

FIG. 2. Laboratory coordinate system. An immobilized
particle’s position is defined by radius vector r =
r(sin ξ cos ψ, sin ξ sin ψ, cos ξ ). The particle’s orientation is
given by the magnetic easy-axis vector n̂ = (0, 0, 1) frozen in
the particle’s body. The particle magnetic moment’s orientation is
determined by the vector m̂ = (sin θ cos φ, sin θ sin φ, cos θ ), which
can differ from the easy-axis vector.

applied in the same direction, where H is the amplitude,
t = t/2τD is the time in units of the double effective relaxation
time of the magnetic moment 2τD, ω = 2τDω is a reduced
angular frequency of the field, and Ĥ = (0, 1, 0). In this case,
the internal macroscopic field inside the sample is equal to the
external magnetic field H. The interaction Um(i) between the
magnetic moment of the ith MNP and the magnetic field can
be written in a Zeeman form

UH (i) = −μ0(mi · H) = −μ0mH cos(ωt ) sin θi sin φi. (3)

The orientation of each magnetic moment is denoted
by the probability distribution function W = W (t, x, φ),
x = cos θi which is the solution of the Fokker-Plank
equation (FPE)

∂W

∂t
= ∂

∂x

[
(1 − x2)

(
∂W

∂x
+ W

∂U

∂x

)]

+ 1

1 − x2

∂

∂φ

(
∂W

∂φ
+ W

∂U

∂φ

)
, (4)

where U is the system’s potential energy in units of the ther-
mal energy kBT . Here W satisfies the normalization condition

∫ 2π

0

∫ 1

−1
W (t, x, φ)dx dφ = 1. (5)
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For an ideal case of noninteracting MNPs, the system’s poten-
tial energy is

U = Uid = UN (i) + UH (i)

kBT
. (6)

For interacting MNPs, we use the approximation suggested
in [35], where dipole-dipole interactions are taken into ac-
count within the framework of first-order modified mean-field
(MMF1) theory [36]:

U = Uint = 1

kBT
[UN (i) + UH (i) + ρ〈Ud (i j)W id ( j)�(i j)〉 j].

(7)

Here the Heaviside step function �(i j) describes the impen-
etrability of two MNPs, while W id ( j) is the orientational
probability for the magnetic moment of the particle j in an
ideal (noninteracting) system. The angular brackets denote the
integration over the positions of particle j and its magnetic
moment orientations

〈· · · 〉 j =
∫

dr jdm̂ j,

∫
dm̂ j = 1

4π

∫ 1

−1
d cos θ j

∫ 2π

0
dφ,

(8)∫
dr j = lim

R→∞

∫ 2π

0
dψ j

∫ 1

−1
d cos ξ j

∫ R/ sin ξ j

0
r2

j dr j . (9)

It should be noted that MMF1 theory takes into ac-
count only coupled interparticle dipole-dipole correlations,
so it has limitations when applied. Testing MMF1 theory
through the results of a computer simulation has shown
that it is valid for predicting the properties of MNPs with
χL � 2 [37].

Substituting the expressions (1)–(3) into (7) and perform-
ing integration through translational degrees of freedom of the
jth particle (9), the potential energy of the system takes the
form

U =Uint = −
(

σ cos2 θi + α cos(ωt ) sin θi sin φi

+ χL

2

∫
W id (2)[3m1zm2z − (m̂1 · m̂2)]dm̂2

)
, (10)

where α = μ0mH/kBT is a Langevin parameter charac-
terizing the dipole-field interactions, σ = Kvm/kBT is the
magnetocrystalline anisotropy parameter, and χL = 8ϕλ is

the Langevin susceptibility, which is a complex characteris-
tic of the sample density ϕ and the intensity of interparticle
dipole-dipole interactions λ = μ0m2/4πd3kBT ; miz is the
z component of the vector m̂i. The dynamic magnetiza-
tion M(t ) and susceptibility χ (ω) are determined in the
standard way:

M(t ) = ρm
∫

dm̂i(m̂i · Ĥ)W

= ρm

4π

∫ 2π

0

∫ π

0
W sin2 θ sin φ dθ dφ, (11)

Re(χ ) = ω

πH

∫ 2π/ω

0
M(t ) cos(ωt )dt,

Im(χ ) = ω

πH

∫ 2π/ω

0
M(t ) sin(ωt )dt . (12)

III. NUMERICAL MODELING

A. Numerical solution of the Fokker-Plank equation

To solve the FPE (4) we use the finite-difference scheme
proposed in [38]. This method’s advantage is numerical sta-
bility, even when convection terms containing the system’s
energy predominate in the FPE. The scheme’s unconditional
stability and the criteria of the convergence of the numer-
ical approximation to the solution were proved in [38].
This numerical algorithm has already been successfully ap-
plied to solve the FPE for interacting moving single-domain
magnetic particles [39] and immobilized MNPs whose easy
axes are aligned parallel to an ac magnetic field [28]. This
algorithm’s features and basic elements when an ac mag-
netic field is directed perpendicular to the easy axes are
outlined here.

A three-dimensional space (t, x, φ) was split into a uniform
grid {(tk, xi, φ j ) | tk = tk−1 + ht , xi = xi−1 + hx, φ j = φ j−1 +
hφ, t0 = 0, x0 = −1 + hx/2, φ0 = hφ/2}, with a finite number
of nodes. Here ht , hx, and hφ determine grid cell size in the t ,
x, and φ directions. Indices k, i, and j vary from 0 to their fi-
nal values Nt = Tf /ht , Nx = 2/hx − 1, and Nφ = 2π/hφ − 1,
correspondingly, where Tf is the final moment of time in
the calculation. Using the notation W k

i, j = W (tk, xi, φ j ), the
FPE (4) can be represented in discrete form as a convection-
diffusion equation

exp(−δ ht )W k
i, j − W k−1

i, j

ht
+ (C2 + D + δ)[exp(−δht )W

k (x, φ)] = 0, k = 0, . . . , Nt , i = 0, . . . , Nx, j = 0, . . . , Nφ. (13)

Here D and C2 are discrete operators for the diffusion and convection terms accordingly. For the operator D, the standard
second-order central difference is used,

DW k (x, φ) = 1

h2
x

[
− f1

(
xi + hx

2

)(
W k

i+1, j − W k
i, j

) + f1

(
xi − hx

2

)(
W k

i, j − W k
i−1, j

)]

+ 1

h2
φ

[ − f2(xi )
(
W k

i, j+1 − W k
i, j

) + f2(xi )
(
W k

i, j − W k
i, j−1

)]
,
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where f1(x) = 1 − x2 and f2(x) = 1/(1 − x2). The operator C2 is constructed to satisfy the stability criteria of the numerical
solution and is defined as follows:

C2W
k (x, φ) = 1

2hx

[
v1(t∗, xi + 0.5hx, φ j )

(
W k

i+1, j + W k
i, j

) − v1(t∗, xi − 0.5hx, φ j )
(
W k

i, j + W k
i−1, j

)]

+ 1

2hφ

[
v2(t∗, xi, φ j + 0.5hφ )

(
W k

i, j + W k
i, j+1

) − v2(t∗, xi, φ j − 0.5hφ )
(
W k

i, j + W k
i, j−1

)]
,

t∗ = tk+1 + tk
2

, v1(t, x, φ) = ∂U (1)

∂x
, v2(t, x, φ) = ∂U (1)

∂φ
.

In Eq. (13), δ is a regularization parameter that is used to make the numerical scheme unconditionally stable; it is equal to
δ = 0.5 max |(v1)′x + (v2)′ϕ|.

Using the classical difference scheme of alternating directions (the Peaceman-Rachford scheme), Eq. (13) is reduced to a
system of discrete equations

uk+1/2 − uk

0.5ht
+ �1uk+1/2 + �2uk = 0,

uk+1 − uk+1/2

0.5ht
+ �1uk+1/2 + �2uk+1 = 0, (14)

where uk = eδht W k , �1 is the difference operator in variable x, and �2 is the difference operator in variable φ. At every t = tk
each equation of the system (14) is a linear algebraic system solved by the tridiagonal matrix algorithm. To satisfy the condition
(5), normalization is performed

W k,norm
i, j = W k

i, j

hxhϕ

∑Nx
i=0

∑Nϕ

j=0 W k
i, j

.

Therefore,

hxhϕ

Nx∑
i=0

Nϕ∑
j=0

W k,norm
i, j = 1.

This equation is condition (5) in a discrete form, determined by the rectangle method. Magnetization M is calculated by
integrating with the trapezoidal rule expression

M(tk ) = ρm

4π

∫ 2π

0

∫ 1

−1
W norm(tk, x, φ)x dx dφ, x ∈ {xi}, φ ∈ {φ j}. (15)

The real Re(χ ) and imaginary Im(χ ) parts of the susceptibility can be found by the numerical integration of (12) over {tk}.

B. Testing numerical results

To test the algorithm the FPE was first solved numerically for a number of special cases where there are known analytical
approximations of the dynamic susceptibility.

(i) A theory of the dynamic magnetic response of an ensemble of immobilized MNPs to an ac magnetic field with a low
amplitude was developed in [40]. This theory is based on the FPB equation for the case when the easy axes are aligned in one
direction and the ac field is oriented at a given angle to the easy axes. Following [40], the susceptibility of the noninteracting χ id

⊥
and the interacting χ⊥ MNPs in the ac field directed perpendicular to the easy axes can be written as

χ id
⊥ = Bid

1 χL, χ⊥ = χLBid
1

(
1 + χLBid

1

3

)
, (16)

where Bid
1 is found from the solution to the set of equations[

2τDiω + n(n + 1) − 2σ
n2 + n − 3

(2n − 1)(2n + 3)

]
Bid

n − 2σ
(n − 2)(n − 1)(n + 1)

(2n − 3)(2n − 1)
Bid

n−2 + 2σ
n(n + 2)(n + 3)

(2n + 3)(2n + 5)
Bid

n+2

= 2(2n + 1)(n − 1)!

(n + 1)!

(∫ 1

−1
eσx2

dx

)−1 ∫ 1

−1
eσx2

√
1 − x2(1 + σx2)P1

n (x)dx. (17)

Here P1
n (x) is the first associated Legendre polynomial. Ex-

plicit expressions for Bid
1 can be determined by truncating

n = l at some arbitrary order setting Bid
n>l = 0 and solv-

ing the set of l algebraic equations. It is worth noting

that the formulas (16) and (17) are valid only for low-field
amplitudes.

(ii) In the case σ = 0, the results of the numeri-
cal solution of the FPE can be compared with a theory
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FIG. 3. Real and imaginary parts of the susceptibility for noninteracting (dashed lines and open symbols) and interacting (solid lines and
closed symbols) immobilized MNPs with χL = 1 at α = 0.01. Lines correspond to analytical expressions (16) and (17) from [40] obtained
for low-field amplitudes. The symbols are from numerical solution of the FPE. The anisotropy constants are σ = 0 (blue squares), σ = 3 (red
triangles), and σ = 5 (black circles).

developed for a system of moving particles. At σ = 0, the
magnetic moment rotates easily inside the particle’s body,
which corresponds to the rotation of the particle itself. The
arrangement of particles in systems of moving and immobi-
lized MNPs is indistinguishable from the theoretical point of
view, since it is random and uniform. In Ref. [41], based on
rigorous statistical and mechanical principles, it was shown
that the expression for the static magnetization of immobi-
lized MNPs at σ → 0 is the same as the magnetization of a
ferrofluid. In addition, Ref. [41] derived analytical formulas
of static magnetization and susceptibility for ensembles of
immobilized magnetic particles with the easy axes distributed
according to particular textures; these are aligned parallel
or perpendicular to an external magnetic field or randomly
distributed. In this section a comparison of numerical results
for a system with σ = 0 is carried out with two theories.
The first theory [42] is valid for a system of noninteract-
ing moving MNPs in an ac magnetic field with an arbitrary
amplitude:

Re(χ ) = χ (0)

1 + (ωτe)2
, (18)

Im(χ ) = χ (0)ωτe

1 + (ωτe)2

(
1 + 0.024α2

1 + 0.18α + 0.033α2

)
,

τe = τD√
1 + 0.07α2

,

χ (0)

χL
= 1 − 0.0636α2

1 + 0.18α + 0.0659α2
. (19)

The second theory [39] was developed for interacting, moving
MNPs in an ac field with an arbitrary amplitude:

Re(χ ) = χ∗(0)

1 + (ωτ ∗
e )2

, (20)

Im(χ ) = χ∗(0)ωτ ∗
e

1 + (ωτ ∗
e )2

(
1 + 0.027α2

1 + 0.102α + 0.047α2

)
, (21)

χ∗(0) = χL

(
1 + χL

3

)(
1 − 0.101α2

1 + 0.276α + 0.104α2

)
,

1

τ ∗
e

= 1

τD

√(
1 − χL

3

)2
+ 0.076α2.

A comparison of the numerical results of the FPE solution
with theories (16)–(21) is presented in Figs. 3 and 4. The
theoretical results are indicated by lines, while the numer-
ical data are shown by symbols. To numerically calculate
the dynamic susceptibility of noninteracting MNPs we use
the single-particle potential (6). To calculate the magnetic re-
sponse of interacting MNPs, the potential energy (10), which
takes into account dipole-dipole interactions, was substituted
into the FPE. The numerical calculation was carried out on
a grid of size ht = 0.001 and hx = hφ = 0.01. To test the
numerical algorithm on theories (16) and (17), the amplitude
of the ac field was equal to α = 0.01 in the numerical calcu-
lations (Fig. 3). When comparing the numerical results with
theories (18)–(21), the magnetic anisotropy constant σ was
equal to zero (Fig. 4). There is good agreement between the
numerical and analytical results for both noninteracting and
interacting MNPs. It should also be noted that an increase
in the magnetic anisotropy constant σ leads to a significant
decrease in the system’s magnetic response in the frequency
range ωτD � 2 (Fig. 3). An increase in field amplitude leads
to a decrease in the dynamic susceptibility for any frequency
of the ac field (Fig. 4). Dipole-dipole interactions lead to an
increase in the magnetic response of MNPs. These trends will
be discussed in the next section in detail.

IV. RESULTS AND DISCUSSION

A. Role of interparticle interactions

Figure 5 shows the frequency dependence of the real and
imaginary parts of the dynamic susceptibility for noninteract-
ing (dashed lines) and interacting (solid lines) MNPs with a
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FIG. 4. Numerical results of the real and imaginary parts of the susceptibility for noninteracting (open symbols) and interacting (closed
symbols) immobilized MNPs with χL = 0.5 and σ = 0. The numerical data are compared with the theory developed for mobile MNPs:
Dashed lines correspond to the analytical expressions (18) and (19) from [42] obtained for noninteracting MNPs; solid lines show the theory
for interacting MNPs (20) and (21) from [39]. The Langevin parameters are α = 0.01 (blue), α = 1 (red), and α = 5 (black).

Langevin susceptibility χL = 0.1, 1, and 1.5 at α = 1 and σ =
1. Interparticle interactions increase the magnetic response
of immobilized MNPs, and at greater χL the contribution
of dipole-dipole interactions to the dynamic susceptibility
are more pronounced. This behavior is due to the fact that
dipole-dipole interactions contribute to the formation of the
head-to-tail correlated magnetic moment structures oriented
along the field direction, which leads to an increase in the
system’s susceptibility. Correlated magnetic moments react
more slowly to the ac magnetic field, which is indicated by
the left shift of the maximum of the imaginary part of the
susceptibility of interacting NMPs with an increase in χL.

Figure 6 shows the contour plots of the ratio of the suscepti-
bility χ of interacting MNPs to the susceptibility χid of MNPs
without interactions depending on field amplitude α and the
magnetic anisotropy constant σ in the ac field’s low-frequency
region of ω → 0. The figures show the effect of interparticle
dipole-dipole interactions on the static susceptibility of immo-
bilized MNPs. Blue corresponds to the value χ/χid ≈ 1. In
these regions, interparticle dipole-dipole interactions do not
contribute to susceptibility; its value is determined mainly
by dipole-field and dipole–easy-axis interactions. It can be

seen that for a system with weak interparticle interactions
(χL = 0.5) the region in which χ/χid > 1 is limited by lower
values of α and σ in comparison with a system with stronger
interparticle interactions (χL = 1.5). In all cases, interparticle
dipole-dipole interactions make the greatest contribution to
the susceptibility of immobilized MNPs at low values of field
amplitude α and the magnetic anisotropy constant σ .

Figure 7 shows the inverse value of the maximum position
of the imaginary part of susceptibility 1/ωmaxτD depending
on the field amplitude α and the magnetic anisotropy constant
σ at χL = 1.5. The value 1/ωmaxτD determines the ratio of
the effective relaxation time τrelax of the magnetic moment of
interacting immobilized MNPs to the characteristic time τD.
Note that τD describes relaxation processes associated with
the thermal fluctuations of the magnetic moment that occur
inside a single MNP when σ � 1. This time is determined
by the formula [43,44] τD = στ0, where τ0 = m/2aγ Kvm

is the precession damping time, a the spin-lattice relaxation
parameter, and γ the gyromagnetic ratio. An increase in σ

and α accelerates relaxation processes in a system of im-
mobilized MNPs, while interparticle dipole-dipole interaction
slows them down. At certain values of parameters α and σ ,

FIG. 5. Real and imaginary parts of the susceptibility for noninteracting (dashed lines) and interacting (solid lines) particles at α = 1,
σ = 1, and different values of the Langevin susceptibility χL = 0.1, 1, and 1.5.
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FIG. 6. Contour plots of the ratio χ (ω → 0)/χid (ω → 0) depending on field amplitude α and magnetic anisotropy constant σ at (a) χL =
0.5 and (b) χL = 1.5.

these effects compensate for each other; as a result, the value
of τrelax/τD becomes equal to 1.

The effect of interparticle interactions on the effective re-
laxation time of the magnetic moment for immobilized MNPs
is shown in Fig. 8. The ratio of the magnetic moment relax-
ation time τrelax of interacting MNPs to the relaxation time
τ id

relax of noninteracting MNPs τ id
relax is presented depending on

σ for three different values χL = 0.5, 1.0, and 1.5 at α = 1.
The values of τrelax and τ id

relax were calculated from the position
of the maximum of the imaginary part of the dynamic suscep-
tibility. It can be seen that interparticle interactions slow down
relaxation processes, however, with an increase in σ the ratio
τrelax/τ

id
relax → 1. This indicates a decrease of the influence

of dipole-dipole interactions on the relaxation times of the
magnetic moment and domination of the dipole-field and the
dipole–easy-axis interactions.

0.4

0.6

0.8

1.0

1.2

FIG. 7. Contour plots 1/ωmaxτD = τrelaxτD depending on field
amplitude α and magnetic anisotropy constant σ for immobilized
interacting MNPs at χL = 1.5.

The dynamic hysteresis loops for the system with χL = 1.5
and σ = 1 at ωτD = 0.1, 1, and 10 are shown in Fig. 9.
The solid lines correspond to interacting MNPs, while dotted
line shows the system without interactions. At the frequency
ωτD = 0.1, the magnetic moment relaxation time is compa-
rable to the field rate, so the magnetic moments have time to
react to the field. This is indicated by the following factors.
At H∗ = 1, magnetization reaches its maximum value; the
hysteresis loop is quite narrow. At H∗ = 0 the magnetization
value is close to zero. Dipole-dipole interactions have a sig-
nificant effect on the system’s magnetization in the region
of low-field frequencies. It can be seen that the slope of the
hysteresis loop for interacting MNPs differs from that for
noninteracting MNPs. With an increase in the frequency of the
field ωτD = 1, there is an expansion of the hysteresis loop and
a shift in the maximum value of magnetization to the region
H∗ < 1, which indicates a delay in the reaction of magnetic
moments to the magnetic field rate. At ωτD = 1 the effect
of dipole-dipole interactions on the system’s magnetization
is still quite clearly expressed. In the high-frequency field

FIG. 8. Ratio of the effective relaxation times of magnetic mo-
ments τrelax/τ

id
relax depending on σ for immobilized MNPs in an ac

magnetic field with amplitude α = 1. The blue line corresponds to
a system with a Langevin susceptibility χL = 0.5, the red line to
χL = 1.0, and the black line to χL = 1.5.
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FIG. 9. Dynamic hysteresis loop M∗(H∗) = M(H∗)/ρm, where
H∗ = α cos ωt for noninteracting MNPs (dotted line) and interacting
MNPs (solid line) with χL = 1.5, σ = 1, and α = 1 at ωτD = 0.1, 1,
and 10.

ωτD = 10 the hysteresis loop is located horizontally; at the
maximum field H∗ = 1 the magnetization is M∗ = 0. The
effect of dipole-dipole interactions on the system’s magneti-
zation is absent. This indicates a strong delay in the magnetic
moments behind the field rate.

B. Field amplitude effects

Figure 10 shows the effect of the amplitude of the ac
magnetic field on the dynamic susceptibility of immobilized

interacting MNPs with χL = 1 at different values of σ = 1
and 5. An increase in α leads to the system’s magnetization;
therefore, its susceptibility to the ac field decreases. The value
of σ determines the magnitude of the potential barrier that
the magnetic moment must overcome to deviate from the easy
axis. Therefore, the growth of σ prevents the reaction of the
magnetic moment to the external field and the orientation of
the magnetic moments along the field. This means that an
increase in σ leads to a decrease in system susceptibility. This
behavior is fundamentally different from the susceptibility of
interacting immobilized MNPs, whose easy axes are aligned
along the ac magnetic field [28]. In [28] it was shown that
an increase in σ leads to an increase in the susceptibility
of MNPs, since at high values of σ the magnetic moments
cannot deviate from the easy axis and are aligned along the
field. Figure 10 shows that at σ = 5 the susceptibility changes
insignificantly with an increase in the field amplitude from
α = 0.1 to 5, which indicates the dominance of dipole–easy-
axis interaction over dipole-field interaction.

Figure 11 shows the dynamic hysteresis loops characteriz-
ing the magnetization of the MNPs with χL = 1 and σ = 1 in
the ac field with an amplitude of α = 1, 2, and 5 at different
frequencies of the alternating field ωτD = 0.1 [Fig. 11(a)] and
ωτD = 1 [Fig. 11(b)]. When ωτD = 0.1 and α = 5, the output
of the hysteresis loop to saturation is observed. This is due to
the combination of two effects: A high-field amplitude sup-
ports the system’s magnetization, while a low-field frequency

FIG. 10. Real and imaginary parts of the susceptibility with χL = 1 at field amplitude α = 0.1, 1, and 5 with (a) and (b) σ = 1 and (c) and
(d) σ = 5.
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FIG. 11. Dynamic hysteresis loops for the immobilized interacting MNPs with χL = 1 and σ = 1 in an ac magnetic field with frequency
(a) ωτD = 0.1 and (b) ωτD = 1. Blue corresponds to the amplitude of the field α = 1, red to α = 2, and black to α = 5.

allows magnetic moments to have time to respond to changes
in the field. In general, an increase in field amplitude leads to
an increase in the system’s magnetization and the expansion
of the hysteresis loop.

Figure 12 shows the dependence of the ratio of relaxation
times τrelax/τD on ac field amplitude. The value of relaxation
times was determined by the position of the maximum of the
imaginary part of the dynamic susceptibility. An increase in
field amplitude as well as an increase in the value of σ leads
to a decrease in the ratio of τrelax/τD; moreover, for some
values of α and σ , this ratio becomes equal to one, that is,
τrelax = τD. The difference between τrelax and τD is caused by
the presence of competing interactions in the system, such
as interparticle dipole-dipole interactions, which leads to an
increase in τrelax and the field-dipole and dipole–easy-axis
interactions that contribute to a decrease in τrelax. In some
parameters, one type of interaction becomes dominant and
completely determines the system’s behavior.

V. CONCLUSION

This work investigated the properties of an ensemble of
immobilized interacting MNPs with aligned easy axes. This
system’s magnetic response to an ac magnetic field directed
perpendicular to the easy axes was studied. The reaction of
MNPs to the field occurred via the Néel mechanism. Based on

FIG. 12. Ratio τrelax/τD for immobilized interacting MNPs with
χL = 1 as a function of field amplitude α at σ = 0.1, 1, and 5.

a numerical solution of the FPE for the probability density of
the magnetic moment orientation, the dynamic magnetization,
frequency-dependent susceptibility, and relaxation times of
the magnetic moments of the particles were determined. Inter-
particle dipole-dipole interactions were taken into account in
the FPE within the framework of first-order modified mean-
field theory; therefore, the results are valid for moderately
concentrated systems with χL � 1.5.

The contributions of dipole-dipole, dipole-field, and
dipole–easy-axis interactions to the dynamic magnetic prop-
erties of the considered system were analyzed. It was shown
that an increase in field amplitude and particle magnetic
anisotropy leads to a decrease in the dynamic susceptibility
of MNPs, while dipole-dipole interactions increase the mag-
netic response of MNPs. Thus, the dynamic behavior of the
MNP ensemble was determined by competing interactions.
The numerical results made it possible to predict the dynamic
properties for various combinations of parameters χL, σ , α,
and ω, and there were no restrictions on the values of σ , α, and
ω. It was shown that at high values of α and σ dipole-dipole
interactions cease to affect the system’s magnetic response.
For example, for an ensemble of MNPs with χL = 0.5, this
region corresponds to α > 4 and σ > 7 for any ac field fre-
quency. In some parameters, one type of interaction becomes
dominant and completely determines the system’s behavior.
For instance, for MNPs with χL = 1 and σ = 5, an increase
in field amplitude in the region of 0 < α < 5 does not lead to
changes in the characteristic times of the relaxation processes
occurring in the system.

The theory proposed in the article allows us to calculate
numerically the values of dynamic magnetization and suscep-
tibility and to determine the relaxation times for the given
orientation geometry of the sample, taking into account com-
peting interactions. This provides a basis for predicting the
dynamic properties of soft magnetically sensitive materials
with a specific internal orientation structure.
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