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Abstract. We define a new quantitative measure for an arbitrary facto-
rial language: the entropy of a random walk in the prefix tree associated
with the language; we call it Markov entropy. We relate Markov entropy
to the growth rate of the language and the parameters of branching of
its prefix tree. We show how to compute Markov entropy for a regu-
lar language. Finally, we develop a framework for experimental study of
Markov entropy by modelling random walks and present the results of
experiments with power-free and Abelian-power-free languages.
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1 Introduction

Formal languages closed under taking factors of their elements (factorial lan-
guages) are natural and popular objects in combinatorics. Factorial languages
include sets of factors of infinite words, sets of words avoiding patterns or rep-
etitions, sets of minimal terms in algebraic structures, sets of palindromic rich
words and many other examples. One of the main combinatorial parameters of
factorial languages is their asymptotic growth. Usually, “asymptotic growth”
means asymptotic behaviour of the function CL(n) giving the number of length-
n words in the language L. (In algebra, the function that counts words of length
at most n is more popular.)

In this paper we propose a different parameter of asymptotic growth, based
on representation of factorial languages as prefix trees, which are diagrams of
the prefix order on words. Given such an infinite directed tree, one can view
each word as a walk starting at the root. We consider random walks, in which
the next node is chosen uniformly at random among the children of the current
node, and define their entropy to measure the expected uncertainty of a single
step. As a random walk is a Markov chain, we call this parameter the Markov
entropy of a language. This parameter was earlier considered for a particular
subclass of regular languages in the context of antidictionary data compression
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[4]. However, it seems that more general cases were not analysed up to now.
Our interest in Markov entropy is twofold. First, it allows us to estimate growth
properties of a language from statistics of experiments, if exact methods do not
work. Second, it is related to a natural and efficient (at least theoretically) data
compression scheme, which encodes the choices made during a walk in the prefix
tree.

Our contribution is as follows. In Sect. 3 we define the order-n Markov entropy
μn(L) of a language L in terms of length-n random walks in its prefix tree T (L)
and the Markov entropy μ(L) = limn→∞ μn(L). Then we relate Markov entropy
to the exponential growth rate of L and to the parameter called branching fre-
quency of a walk in T (L). In Sect. 4.1 we show how to compute Markov entropy
for a regular language. Then in Sect. 4.2 we propose a model of random walk
for an arbitrary factorial language through depth-first search and show how to
recover branching frequency from observable parameters of a walk. Finally, in
Sect. 5 we present algorithms used in the experimental study of Markov entropy
for power-free and Abelian-power-free languages and the results of this study.
All proofs are omitted; see arXiv:2105.02750 for the full version.

2 Preliminaries

We study words and languages over finite alphabets; Σ∗ denotes the set of all
words over an alphabet Σ={0, . . . , σ−1}. Standard notions of prefix, suffix, fac-
tor are used. We use the array notation w = w[1..n] for a word of length n = |w|;
thus w[i..i+k−1] stands for the length-k factor of w starting at position i. In
particular, w[i..i] = w[i] is the ith letter of w and w[i..i−1] is the empty word,
denoted by λ. A word w is right extendable in a language L if L contains infinitely
many words with prefix w; re(L) denotes the set of all words which are right
extendable in L.

A word w has period p if w[1..|w|−p] = w[p+1..w]. For an integer k > 1, the
k-power of a word w is the concatenation of k copies of w. For an arbitrary real
β > 1, the β-power (resp., the β+-power) of w is the prefix of length �β|w|� (resp.,
�β|w| + 1�) of the infinite word w∞ = ww · · · w · · · . E.g., (010)2

+
= (010)7/3 =

0100100, (010)5/2 = (010)(5/2)+ = 01001001. A word is β-power-free if it has
no β-powers as factors; the k-ary β-power-free language PF(k, β) consists of all
β-power-free words over the k-letter alphabet. The same definitions apply to β+-
powers. The crucial result on the power-free languages is the threshold theorem,
conjectured by Dejean [7] and proved by efforts of many authors [3,6,16–18,
20]. The theorem establishes the boundary between finite and infinite power-
free languages: the minimal infinite k-ary power-free languages are PF(3, 7

4

+),
PF(4, 7

5

+), and PF(k, k
k−1

+) for k = 2 and k ≥ 5. These languages are called
threshold languages.

The Parikh vector ψ(w) of a word w is a length-σ vector such that ψ(w)[i]
is the number of occurrences of the letter i in w for each i ∈ Σ. Two words
with equal Parikh vectors are said to be Abelian equivalent. A concatenation
of k Abelian equivalent words is an Abelian kth power. Abelian k-power-free
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words are defined in analogy with k-power-free words; Abelian square-free (resp.,
cube-free, 4-power-free) languages over four (resp., three, two) letters are infinite
[8,12].

A language L ⊆ Σ∗ is factorial if it contains all factors of each its element.
Power-free and Abelian-power-free languages are obviously factorial. The rela-
tion “to be a prefix (resp., a suffix, a factor)” is a partial order on any language.
The diagram of the prefix order of a factorial language L is a directed tree T (L)
called the prefix tree. Prefix trees are the main objects of study in this paper. For
convenience, we assume that an edge of the form (w,wa) in T (L) is labeled by
the letter a; in this way, the path from the root to w is labeled by w. For regular
languages we use deterministic finite automata with partial transition function
(PDFA), viewing them as labelled digraphs. We assume that all states of a PDFA
are reachable from the initial state; since we study factorial languages, we also
assume that all states are final (so a PDFA accepts a word iff it can read it).
When a PDFA A is fixed, we write q.w for the state of A obtained by reading
w starting at the state q.

Combinatorial complexity (or growth function) of a language L ⊆ Σ∗ is a
function counting length-n words in L: CL(n) = |L ∩ Σn|. The growth rate
gr(L) = lim supn→∞(CL(n))1/n describes its asymptotic growth. The combi-
natorial complexity of factorial languages is submultiplicative: CL(m + n) ≤
CL(m)CL(n); by Fekete’s lemma [9], this implies gr(L) = limn→∞(CL(n))1/n =
infn∈N(CL(n))1/n. A survey of techniques and results on computing growth rates
for regular and power-free languages can be found in [27].

Infinite Trees. We consider infinite k-ary rooted trees: the number of children
of any node is at most k. Nodes with more than one child are called branching
points. The level |u| of a node u is the length of the path from the root to u. A
subtree Tu of a tree T consists of the node u and all its descendants. The tree
T is p-periodic (resp., p-subperiodic) if there exists a function f on the set of
nodes such that each subtree Tu is an isomorphic copy (resp., is a subgraph) of
the subtree Tf(u) and |f(u)| ≤ p. The prefix tree of any factorial language L is
0-subperiodic, since suffixes of elements of L are also in L. Furthermore, T (L)
is p-periodic for some p iff L is regular (p-periodicity means exactly that L has
finitely many quotients, which is equivalent to regularity).

There are two widely used parameters of growth for infinite trees; see,
e.g., [15]. “Horizontal” growth is measured by the growth rate gr(T ) =
limn→∞(Tn)1/n, where Tn is the number of nodes of level n, whenever this limit
exists. Hence, gr(T (L)) = gr(L). “Vertical” growth is measured by the branching
number br(T ), which is usually defined using the notion of network flow. How-
ever, Furstenberg’s theorem [10] says that br(T ) = gr(T ) for subperiodic trees,
so for prefix trees we have only one parameter. In Sect. 3, we propose one more
parameter of growth using the notion of entropy.

Entropy. Let ξ = (x1|p1 , . . . , xn|pn
) be a discrete finite-range random variable,

where pi, i = 1, . . . , n, is the probability of the outcome xi. The entropy of ξ is the
average amount of information in the outcome of a single experiment: H(ξ) =
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−
∑k

i=1 pi log pi (throughout the paper, log stands for the binary logarithm).
Lemma 1 below contains basic properties of entropy, established by Shannon
[23].

Lemma 1. (1) For a random variable ξ = (x1|p1 , . . . , xn|pn
), H(ξ) ≤ log n;

equality holds for the uniform distribution only.
(2) For a random vector (ξ, η), H(ξ, η) ≤ H(ξ) + H(η); equality holds iff ξ and
η are independent.

3 Entropy Characteristics of Prefix Trees

Let T = T (L) be a prefix tree. The entropy characteristics introduced below
measure the expected uncertainty of a single letter in a random word from L.
By order-n general entropy Hn(L) we mean the entropy of a random variable
uniformly distributed on the set |L ∩ Σn| (or on the set of level-n nodes of T ),
divided by n. By Lemma 1(1), Hn(L) = log CL(n)

n . The fact that L is factorial
guarantees the existence of the general entropy of L, which is by definition the
limit

H(L) = lim
n→∞ Hn(L) = lim

n→∞ log(CL(n))1/n = log gr(L).

A different notion of entropy stems from consideration of random walks in T . As
usual in graph theory, by random walk we mean a stochastic process (Markov
chain), the result of which is a finite or infinite walk in the given graph. The
process starts in the initial state (either fixed or randomly chosen from some
distribution) and runs step by step, guided by the following rule: visiting the
node u, choose an outgoing edge of u uniformly at random1 and follow it to
reach the next node. The walk stops if u has no outgoing edges. Note that all
walks in T are directed paths; we refer to the walks starting at the root as
standard. Let ηn be the random variable with the range |L ∩ Σn| such that the
probability of a word w ∈ L is the probability that a random standard walk in T ,
reaching the level n, visits w. The order-n Markov entropy of L is μn(L) = H(ηn)

n .
The following lemma is immediate from definitions and Lemma 1(1).

Lemma 2. For any factorial language L and any n, one has μn(L) ≤ Hn(L).

Similar to the case of the general entropy, the limit value exists:

Lemma 3. Let L be a factorial language. Then there exists a limit μ(L) =
limn→∞ μn(L) = infn∈N μn(L).

We call μ(L) the Markov entropy of L. We want to estimate μ(L) for different
languages; so our first goal is to relate H(ηn), and thus μn(L), to the parameters
of the tree T . Let ch(w) denote the number of children of the node w in T and
P (w) be the probability of visiting the word w by a random standard walk.

1 Non-uniform distributions are also used in many applications but we do not consider
them here.
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Lemma 4. P (w) =
( ∏|w|−1

i=0 ch(w[1..i])
)−1

.

In general, P (w) may underestimate the probability assigned to w by η|w|;
this is the case if some prefix of w has a child which generates a finite subtree
with no nodes of level |w|. To remedy this, we consider trimming of prefix trees.
By n-trimmed version of T , denoted by T[n], we mean the tree obtained from T
by deletion of all finite subtrees Tu which have no nodes of level n (and thus of
bigger levels). In other words, a node w ∈ L is deleted iff L contains no length-n
word with the prefix w.

Example 1. Let L = PF(2, 3), T = T (L). If n ≥ 9, then T[n] does not contain
u = 00100100 because u0, u1 end with cubes; if n ≥ 15, then T[n] does not
contain v = 0100101001010, because v1, v00, and v01 end with cubes.

The trimmed version of T , denoted by T[], is obtained from T by deletion of
all finite subtrees. The next lemma follows from definitions.

Lemma 5. (1) T[] =
⋂

n∈N
T[n]. (2) T[] is the prefix tree of re(L).

We write ch[n](w) (ch[](w)) for the number of children of w in T[n] (resp., T[])
and P[n](w) (P[](w)) for the probability of visiting w by a random standard walk
in T[n] (resp., T[]). As in Lemma 4, one has

P[n](w) =
( |w|−1∏

i=0

ch[n](w[1..i])
)−1

and P[](w) =
( |w|−1∏

i=0

ch[](w[1..i])
)−1

. (1)

Lemma 6. Let w ∈ L, |w| = n. Then ηn assigns to w the probability P[n](w).

Definitions and Lemma 6 imply H(ηn) = −
∑

w∈L∩Σn P[n](w) log P[n](w).
Given an arbitrary tree T , we assign to each internal node u its weight, equal

to the logarithm of the number of children of u. Branching frequency of standard
walk ending at a node w, denoted by bf(T , w), is the sum of weights of all nodes
in the walk, except for w, divided by the length of the walk (=level of w). The
use of branching frequency for prefix trees can be demonstrated as follows. For a
language L, a natural problem is to design a method for compact representation
of an arbitrary word w ∈ L. A possible solution is to encode the standard
walk in T = T (L), ending at w. We take |w|-trimmed version of T and encode
consecutively all choices of edges needed to reach w. For each predecessor u of w
we encode the correct choice among ch[|w|](u) outgoing edges. The existence of
asymptotically optimal entropy coders, like the arithmetic coder [21], allows us
to count log ch[|w|](u) bits for encoding this choice. Thus w will be encoded by
∑|w|−1

i=0 log
(
ch[|w|](w[1..i])

)
bits, which is exactly bf(T[|w|], w) bits per symbol.

Remark 1. The proposed method of coding generalizes the antidictionary com-
pression method [4] for arbitrary alphabets. Antidictionary compression works
as follows: given w ∈ L ⊆ {0, 1}∗, examine each prefix w[1..i]; if it is the only
child of w[1..i−1] in the prefix tree of L, delete w[i]. In this way, the remaining
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bits encode the choices made in branching points during the standard walk to w.
The compression ratio is the fraction of branching points among the predecessors
of w: any branching point contributes 1 to the length of the code, while other
nodes in the walk contribute nothing.

The following theorem relates branching frequencies to Markov entropy.

Theorem 1. For a factorial language L and a positive integer n, the order-
n Markov entropy of L equals the expected branching frequency of a length-n
random walk in the prefix tree T (L).

4 Computing Entropy

4.1 General and Markov Entropy for Regular Languages

Let L be a factorial regular language, A be a PDFA, recognizing L. The problem
of finding gr(L), and thus H(L), was solved by means of matrix theory as follows.
By the Perron–Frobenius theorem, the maximum absolute value of an eigenvalue
of a non-negative matrix M is itself an eigenvalue, called the principal eigenvalue.
A folklore theorem (see [27, Th. 2]) says that gr(L) equals the principal eigenvalue
of the adjacency matrix of A. This eigenvalue can be approximated2 with any
absolute error δ in O(|A|/δ) time [24, Th. 5]; see also [27, Sect. 3.2.1].

Now consider the computation of μ(L). By Lemma 3 and Theorem 1, μ(L) is
the limit of expected branching frequencies of length-n random standard walks in
the prefix tree T = T (L). Standard walks in T are in one-to-one correspondence
with accepting walks in A, so we can associate each node w ∈ T with the state
λ.w ∈ A and consider random walks in T as random walks in A. We write
deg→(u) for the out-degree of the node u in A.

We need the apparatus of finite-state Markov chains. Such a Markov chain
with m states is defined by a row-stochastic m × m matrix A (row-stochastic
means that all entries are nonnegative and all row sums equal 1). The value
A[i, j] is treated as the probability that the next state in the chain will be j
given that the current state is i. Any finite directed graph G with no nodes of
out-degree 0 represents a finite-state Markov chain. The stochastic matrix of
G is built as follows: take the adjacency matrix and divide each value by the
row sum of its row (see Fig. 1 below). Recall some results on finite-state Markov
chains (see, e.g., [11, Ch. 11]). Let A be the m × m matrix of the chain. The
process is characterized by the vectors p(n) = (p(n)

1 , . . . , p
(n)
m ), where p

(n)
i is the

probability of being in state i after n steps; the initial distribution p(0) is given
as a part of description of the chain. The stationary distribution of A is a vector
p = (p1, . . . , pm) such that pi ≥ 0 for all i,

∑m
i=1 pi = 1 and pA = p. Every row-

stochastic matrix has one or more stationary distributions; such a distribution is
unique for the matrices obtained from strongly connected digraphs. The sequence
{p(n)} approaches some stationary distribution p in the following sense:

2 Note that it is not possible in general to find the roots of polynomials exactly.
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(∗) there exists an integer h ≥ 1 such that p = limn→∞ p(n)+p(n+1)+···+p(n+h−1)

h

(That is, the limit of the process is a length-h cycle and p gives the average
probabilities of states in this cycle. In practical cases usually h = 1 and thus
p = limn→∞ p(n).)

Theorem 2. Let L be a factorial regular language, Â be a PDFA accepting
re(L). Suppose that Â has m states 1, . . . , m and p = (p1, . . . , pm) is the sta-
tionary distribution for a random walk in Â, starting at the initial state. Then
μ(L) =

∑m
i=1 pi log(deg→(i)).

Example 2. Let L ⊂ {0, 1}∗ be the regular language consisting of all words
having no factor 11. Its accepting PDFA, the corresponding matrices and entropy
computations are presented in Fig. 1. Note that re(L) = L.

Fig. 1. Accepting PDFA and entropy computations for the language L (Example 2).

Computational Aspects. Computing Â from A takes O(|A|) time, as it is suf-
ficient to split A into strongly connected components and traverse the acyclic
graph of components. The vector p can be computed by solving the size-m lin-
ear system p(Â − I) = 0, where Â is the adjacency matrix of Â and I is the
identity matrix. This solution requires Θ(m3) time and Θ(m2) space, which is
too much for large automata. More problems arise if the solution is not unique;
but the correct vector p still can be found by means of matrix theory (see [11,
Ch. 11]). In order to process large automata (say, with millions of states), one
can iteratively use the equality p(n+1) = p(n)Â to approximate p with the desired
precision. Each iteration can be performed in O(m) time, because Â has O(m)
nonzero entries. One can prove, similar to [26, Th. 3.1], that under certain natural
restrictions O(δ−1) iterations is sufficient to obtain p within the approximation
error δ.

4.2 Order-n Markov Entropy via Random Walks

Let L ⊆ Σ∗ be an arbitrary infinite factorial language such that the predicate
L(w), which is true if w ∈ L and false otherwise, is computable. There is little
hope to compute μ(L), but one can use an oracle computing L(w) to build
random walks in the prefix tree T = T (L) and obtain statistical estimates
of μn(L) for big n. We construct random walks by random depth-first search
(Algorithm 1), executing the call DFS(λ, n). The algorithm stops immediately
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when level n is reached. When visiting node u, the algorithm chooses a non-
visited child of u uniformly at random and visits it next. If all children of u are
already visited, then u is a “dead end” (has no descendants at level n), and the
search returns to the parent of u.

Algorithm 1. Random walk in T (L) by depth-first search
1: function DFS(u, n) � u=node, n=length of walk
2: if |u| = n then break � walk reached level n
3: (a1a2 . . . aσ) ← random permutation of Σ
4: for j = 1 to σ do
5: if L(uaj) then DFS(uaj , n) � visit uai next
6: return � u has no descendant at level n

Lemma 7. DFS(λ, n) builds a length-n random standard walk in T (L).

Consider the values of the counter j in the instances DFS(λ, n),DFS(w[1], n),
. . . ,DFS(w[1..n−1], n) at the moment when the search reaches level n. We define
profile of the constructed walk as the vector r = (r1, . . . , rσ) such that ri is
the number of instances of DFS in which j = i. Note that different runs of
Algorithm 1 may result in the same walk with different profiles (due to random
choices made, depth-first search visits some dead ends and skips some of the
others). Given a profile r, one can compute the expected branching frequency
bf(r) of a walk with this profile: bf(r) = 1

n

∑σ
i=1 ci log i, where the parameters

ci are computed in Theorem 3 below.

Theorem 3. Let r = (r1, . . . , rσ) be a profile of a length-n random standard
walk in a tree T . For each i = 1, . . . , σ, let ci be the expected number of nodes,
having exactly i children in the tree T[n], in a random standard walk with the
profile r. Then

(c1, . . . , cσ)P = r, where P [i, k] =

(
σ−i
k−1

)

(
σ

k−1

) −
(
σ−i

k

)

(
σ
k

) for i, k = 1, . . . , σ. (2)

Example 3. Let us solve (2) for σ = 2 (left) and σ = 3 (right):

(c1, c2)
[

1
2

1
2

1 0

]

= (r1, r2)

c1 = 2r2, c2 = r1 − r2

bf(r) = r1−r2
r1+r2

(c1, c2, c3)

⎡

⎣

1
3

1
3

1
3

2
3

1
3 0

1 0 0

⎤

⎦ = (r1, r2, r3)

c1 = 3r3, c2 = 3r2 − 3r3, c3 = r1 − 2r2 + r3

bf(r) = 3(r2−r3)+(r1−2r2+r3) log 3
r1+r2

5 Experimental Results

With the goal of comparing general entropy and Markov entropy for power-
free languages, we started with a side experiment. We took the ternary square-
free language SF = PF(3, 2), which is a well-studied test case. Its growth rate
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gr(SF) ≈ 1.30176 is known with high precision [27] from the study of its regular
approximations. A kth regular approximation SFk of SF is the language of all
words having no squares of period ≤ k as factors. The sequence {gr(SFk)} demon-
strates a fast convergence to gr(SF). So we wanted to (approximately) guess the
Markov entropy μ(SF) extrapolating the initial segment of the sequence μ(SFk).

The results are as follows: we computed the values μ(SFk) up to k = 45
with absolute error δ < 10−8 using the technique from Sect. 4.1. We obtained
μ(SF45) ≈ 0.36981239; the extrapolation of all obtained values gives 0.369810 <
μ(SF) < 0.369811. At the same time we have H(SF) = log(gr(SF)) ≈ 0.380465,
so the two values are clearly distinct but close enough.

5.1 Random Walks in Power-Free Languages

To perform experiments with length-n random walks for a language L, one needs
an algorithm to compute L(w) to be used with Algorithm 1. A standard app-
roach is to maintain a data structure over the current word/walk w, which
quickly answers the query “w ∈ L?” and supports addition/deletion of a letter
to/from the right. The theoretically best such algorithm for power-free words was
designed by Kosolobov [14]: it spends O(log n) time per addition/deletion and
uses memory of size O(n). However, the algorithm is complicated and the con-
stants under O are big. We developed a practical algorithm which is competitive
for the walks up to the length of several millions. For simplicity, we describe it for
square-free words but the construction is the same for any power-free language.

We use arrays repeati[1..n], i = 0, . . . , �log n�−1 to store previous occurrences
of factors. If |u| ≥ j for the current word u, then repeati[j] is the last position of
the previous occurrence of the factor u[j−2i+1..j] or −∞ if there is no previous
occurrence. To delete a letter from u we just delete the entries repeati[|u|]; let
us consider the procedure add(u, a) (Algorithm 2) which adds the letter a to u,
checks square-freeness of ua and computes repeati[|u| + 1]. The auxiliary array
last[1..σ] stores the rightmost position of each letter in the current word.

Algorithm 2. Online square detection: adding a letter
1: function add(u, a) � u=word, a=letter to add
2: repeat0[|u| + 1] ← last[a]; last[a] ← |u| + 1 � fill previous occurrence of a
3: free ← true � square-freeness flag
4: for i = 0 to 	log n
 − 1 do
5: x ← repeati[|u|+1]; p = |u| + 1 − x � p is the possible period of a square

6: if p ≤ 2i+1 and repeati[x+2i] = x + 2i − p then free ← false; break � Fig. 2

7: if i = 	log n
 − 1 then break � no more arrays to update

8: compute repeati+1[|u| + 1] � from repeati

9: if repeati+1[|u| + 1] = −∞ then break � all repeated suffixes processed

10: return free � the answer to “is ua square-free?”



Branching Frequency and Markov Entropy of Repetition-Free Languages 337

Fig. 2. Detecting a square by Algorithm 2.

Correctness. Recall that u is square-
free, so the occurrences of a factor of u
can neither overlap nor touch. Assume
that ua ends with a square vv, p = |v|,
2i < p ≤ 2i+1. Then p will be found in
line 5 as |u| + 1 − repeati[|u|+1] (red
arcs in Fig. 2 show the suffix of length
2i and its previous occurrence). The
condition in line 6 means exactly the equality of words marked by dash arcs in
Fig. 2; thus, vv is detected and add(u, a) returns false. For the other direction,
if add(u, a) = false, then the condition in line 6 held true and thus a square
was detected as in Fig. 2. The time complexity is O(

√
n) on expectation; the

experiments confirm this estimate.

Experiments. We studied the following languages: PF(2, 3) and PF(3, 2) as typ-
ical “test cases”, threshold languages over 3,. . . ,10, 20, 50, and 100 letters, and
PF(2, 7

3

+) as the smallest binary language of exponential growth. All languages
from this list have “essentially binary” prefix trees: a letter cannot coincide
with any of (σ−2) preceding letters, and so a node of level at least σ−2 has
at most two children. Hence we computed expected branching frequencies as in
Example 3. For each language, we computed profiles of 1000 walks of length 105

and 100 walks of length 106. The tables with the data are available at [29]. We
briefly analysed the data. The most interesting findings, summarized below, are
the same for each of the studied languages. Some figures are presented in Table 1.

1. The profiles of all walks in T = T (L) are close to each other. To be precise,
assume that bf(r) = μn(L) for all constructed profiles. Then the number r2

computed for a length-n random walk is the number of heads in c1 tosses
of a fair coin (among c1 nodes with two children, in r2 cases the dead end
was chosen first). Hence the computed values of r2 form a sample from the
binomial distribution B(c1,

1
2 ). And indeed, the set of computed r2’s looks

indistinguishable from such a sample; see [29, stat100000]. This property sug-
gests the mean value of bf(r) over all experiments as a good approximation
of μn(L).

2. The 99% confidence interval for the mean branching frequency bf(T[|w|], w) of
the 1000 constructed walks of length 105 is of length ∼ 4 · 10−4 and includes
the mean value of bf(r) for the walks of length 106. For the language SF, this
interval also includes the value μ(SF) conjectured from the study of μ(SFk).
This property suggests that μn(L) for such big n is close to the Markov
entropy μ(L).

3. As μ(L) ≤ H(L) = log(gr(L)), the value of μ(L) can be converted to the
lower bound for the growth rate of L. The values 2mean(bf(r)) from our experi-
ments differ from the best known upper bounds for the studied languages [27,
Tbl. A1–A3] by the margin of 0.004–0.018. Such a bound is quite good for all
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cases where specialized methods [13,25] do not work. The results for thresh-
old languages support the Shur–Gorbunova conjecture [28] that the growth
rates of these languages tend to the limit α ≈ 1.242 as the size of the alphabet
approaches infinity.

Table 1. Markov entropy for power-free languages: experiments

Language Mean bf(r) (105) Mean bf(r) (106) 2µ(L) gr(L)

PF(2, 7
3

+
) 0.27221 0.27220 ≈1.20766 ≈1.22064

PF(2, 3) 0.52562 0.52553 ≈1.43956 ≈1.45758

PF(3, 7
4

+
) 0.30249 0.30251 ≈1.23327 ≈1.24561

PF(3, 2) 0.36988 0.36987 ≈1.29223 ≈1.30176

PF(4, 7
5

+
) 0.09137 0.09151 ≈1.06535 <1.06951

PF(5, 5
4

+
) 0.20279 0.20265 ≈1.15092 <1.15790

PF(6, 6
5

+
) 0.28536 0.28526 ≈1.21871 <1.22470

PF(7, 7
6

+
) 0.29753 0.29749 ≈1.22903 <1.23690

PF(8, 8
7

+
) 0.28881 0.28867 ≈1.22163 <1.23484

PF(9, 9
8

+
) 0.30716 0.30732 ≈1.23727 <1.24668

PF(10, 10
9

+
) 0.29674 0.29669 ≈1.22836 <1.23931

PF(20, 20
19

+
) 0.30002 0.29982 ≈1.23099 <1.24205

PF(50, 50
49

+
) 0.30006 0.29970 ≈1.23089 <1.24210

PF(100, 100
99

+
) 0.30047 0.29974 ≈1.23093 <1.24210

5.2 Random Walks in Abelian Power-Free Languages

Similar to Sect. 5.1, we need an algorithm checking Abelian power-freeness.
Here we describe an algorithm detecting Abelian squares; its modification for
other integer powers is straightforward. If a word w[1..n] is fixed, we let ψi =
ψ(w[n−i+1..n]) − ψ(w[n−2i+1..n−i]). A simple way to find whether w ends
with Abelian square is to check ψi = 0 for all i. Since ψi+1 can be obtained from
ψi with a constant number of operations (add w[n−i] twice, subtract w[n−2i]
and w[n−2i−1]), this check requires Θ(n) time. However, Θ(n) time per iter-
ation appeared to be too much to perform experiments comparable with those
for power-free languages, so we developed a faster algorithm. It maintains two
length-n arrays for each letter a ∈ Σ: da[i] is the position of ith from the left let-
ter a in the current word w and ca[i] is the number of occurrences of a in w[1..i]
(i.e., a coordinate of ψ(w[1..i])). When a letter is added/deleted, these arrays
are updated in O(1) time (we regard σ as a constant). The function Asquare(u)
(Algorithm 3) checks whether the word w has an Abelian square as a suffix.

Correctness: see full version. Complexity: in experiments, Algorithm 3 checked
Θ(

√
n) suffixes of a length-n word, but we have no theoretical proof for this.
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Algorithm 3. Online Abelian square detection
1: function Asquare(u) � u=word
2: l ← |u| − 1; i ← 1 � two counters
3: free ← false � square-freeness flag; turns true when check finishes
4: while not free do
5: for a ∈ Σ do
6: ψ[a] ← ca[|u|] − ca[|u|−i] � a-coordinate of ψ(u[|u|−i+1..|u|])
7: if ψ[a] > ca[|u|−i] then free ← true; break � no squares possible

8: l ← min{l, da[ca[|u|−i] − ψ[a] + 1]}
9: if l = |u| − 2i + 1 then break � u[|u| − 2i + 1..|u|] is an Abelian square

10: i ← �(|u| − l + 1)/2
11: return free � the answer to “is ua Abelian square-free?”

Experiments. The structure and growth of Abelian-power-free languages are
little studied. We considered the 4-ary Abelian-square-free language ASF, the
ternary Abelian-cube-free language ACF, and the binary Abelian-4-power-free
language A4F; see Table 2. Our main interest was in estimating the actual growth
rate of these languages. The upper (resp. lower) bounds for the growth rates are
taken from [22] (resp., from [1,2,5]). For ASF and ACF we got profiles of 500
walks of length 105 and 100 walks of length 5·105; for A4F, 100 profiles of walks
of length 105 were computed. The results suggest that the automata-based upper
bounds for the growth rates of Abelian-power-free languages are quite imprecise,
in contrast with the case of power-free languages. In addition, the experiments
discovered the existence of very big finite subtrees on relatively low levels, which
slow down the depth-first search. In fact, to obtain long enough words from A4F

we modified the DFS function to allow “forced” backtracking if the length of the
constructed word does not increase for a long time. Even with such a gadget,
the time to build one walk of length 105 varied from 9 min to 4 h.

Table 2. Markov entropy for Abelian-power-free languages: experiments

Language Mean bf(r) (105) Meanbf(r) (5·105) 2µ(L) gr(L)

ASF 0.20475 0.20337 ≈1.15138 <1.44435; >1.00002

ACF 1.08439 1.08418 ≈2.12017 <2.37124; >1.02930

A4F 0.20736 – ≈1.15457 <1.37417; >1.04427

6 Conclusion and Future Work

In this paper we showed that efficient sampling of very long random words is
a useful tool in the study of factorial languages. Already the first experiments
allowed us to state a lot of problems for further research. To mention just a few:

– for which classes of languages, apart from regular ones, the Markov entropy
can be computed (or approximated with a given error)?
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– are there natural classes of languages satisfying μ(L) = H(L)? μ(L) � H(L)?
– how the branching frequencies of walks in a prefix tree are distributed? which

statistical tests can help to approximate this distribution?

Concerning the last questions, we note that though our experiments showed
“uniformity” of branching frequencies in each of the studied languages, the fre-
quencies of individual words can vary significantly. For example, the language
PF(2, 3) with the average frequency about 0.525 contains infinite words u and v
satisfying bf(u) = 0.72 and bf(v) < 0.45 [19].
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