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a b s t r a c t 

A behavior of metapopulation consisting of two coupled subsystems modeled by the Ricker map is con- 

sidered. We study how dynamics of the metapopulation changes under increase in the intensity of migra- 

tion between subpopulations. For the deterministic model, a variety of equilibrium, periodic, quasiperi- 

odic, and chaotic attractors is described. An impact of random disturbances on the behavior of metapop- 

ulation is studied both numerically and analytically with the help of confidence domains. A phenomenon 

of the noise-induced temporal stabilization of the unstable equilibrium is discovered. We point out the 

special role of transients and fractal riddled basins in the noise-induced transitions from order to chaos. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

At present, in mathematical modeling, research interest is di- 

ected towards complex phenomena observed in coupled systems. 

eing coupled, even simple dynamical systems can be quite intri- 

ate, demonstrating a rich variety of qualitatively different regimes, 

oth regular and chaotic [1–3] . 

Mathematical studies of underlying reasons of coupling-induced 

henomena are motivated by applications to ecology [4] , epidemi- 

logy [5] , brain activity [6] , engineering [7] , social networks [8] ,

tc. Based on the modern theory of bifurcations, the analysis of 

omplex processes in coupled systems reveals such nonlinear phe- 

omena as transitions between order and chaos, crisis-induced 

ntermittency, transverse instability and riddled basins, birth of 

ulti-layered tori (see e.g. [9–14] ). The presence of stochastic fluc- 

uations gives additional variety to possible dynamical modes in 

oupled systems and complicate their analysis [15–21] . 

Population dynamics is one of the most important fields of sci- 

nce where effects of coupling are naturally present. Dynamics of 

etapopulations attracts attention of many researchers, both biol- 

gists and mathematicians [22–24] . Studies of the effects of mutual 

igrations in metapopulations are of a special interest [25–30] . 

In the present paper, we examine the spatially structured 

etapopulation consisting of two coupled subsystems with local 

ynamics defined by the Ricker map [31] . In isolated subsystems, 

arious modes can be observed: equilibrium, periodic, and chaotic. 

n this paper, we focus on the case when isolated units exhibit 
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quilibrium regimes. The aim of the study is to analyze the diver- 

ity of modes of collective dynamics with a change in the intensity 

f coupling and random noise. 

. Deterministic model 

Consider a system of two coupled population units modeled by 

he Ricker map [31] with the function f (x ) = x exp (μ(1 − x )) 

 t+1 = f (x t ) + ηt , 

 t+1 = f (y t ) − ηt . 
(1) 

ere, x t , y t are densities of subpopulations, and ηt characterizes 

utual flows between them. For ηt ≡ 0 , subsystems are indepen- 

ent of each other, and its dynamics is determined by the parame- 

er μ of intrinsic growth rate. Regimes of dynamics of the isolated 

icker model x t+1 = x t exp (μ(1 − x t )) under variation of μ are pre- 

ented by the bifurcation diagram in Fig. 1 . For any μ, this isolated 

odel exhibits the equilibrium x̄ = 1 that is stable for 0 < μ < 2 .

t μ = 2 , this equilibrium becomes unstable and for increasing μ, 

 well-known Feigenbaum tree with regular and chaotic attractors 

s observed. 

It is assumed that populations inhabit adjacent territories, so 

igration of individuals between these territories is possible. To 

odel the migration ηt , we will use the following law: 

t = σ (y t − x t ) . (2) 

o, migration between subpopulations is proportional to the dif- 

erence between y t and x t with the coupling coefficient σ . The pa- 

ameter σ regulates a strength of the migration flow. To provide 

on-negativeness of x t and y t in dynamics of the system (1), (2) , 

e use the appropriate truncation. 

https://doi.org/10.1016/j.chaos.2021.111270
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2021.111270&domain=pdf
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Fig. 1. Bifurcation diagram of the isolated Ricker model. 
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In the present paper, we focus on the study of effects of mutual 

ows for the case when isolated subpopulations are in the same 

table equilibrium mode. Here and further, we fix the value μ = 1 . 8

nd investigate how variation of the migration intensity σ changes 

 common dynamics of the metapopulation (1), (2) . 

Note, that the system (1), (2) for any σ has the equilibrium (1,1) 

hich is stable for σ < 0 . 1 . Changes in dynamical behavior of the

ystem (1), (2) versus parameter σ are described by the bifurca- 

ion diagram in Fig. 2 . Here, along with x -coordinates of attractors 

blue), the largest Lyapunov exponent � is shown by red. 

As can be seen, under increasing σ , the equilibrium loses its 

tability at σ = 0 . 1 and the stable 2-cycle appears. This 2-cycle 

ransforms into a two-torus, further two-torus is replaced by a dis- 

rete cycle, and finally chaotic regime is observed. The largest Lya- 

unov exponent has zero values at bifurcation points, and positive 

alues when the system (1), (2) is chaotic. 

A variety of attractors of the system (1), (2) is illustrated in 

ig. 3 . Here, we show the equilibrium (1,1) for σ = 0 . 08 , 2-cycle

or σ = 0 . 26 , two-torus for σ = 0 . 298 , 22-cycle for σ = 0 . 33 , 12-

ycle for σ = 0 . 42 and various chaotic attractors for σ = 0 . 353 ,

= 0 . 362 , σ = 0 . 366 , and σ = 0 . 413 . 

Different types of anti-phase oscillations appear in the system 

1), (2) : periodic, quasiperiodic, and chaotic. Some examples of 

hese oscillating modes are shown in Fig. 4 where time series for 

he x, y -coordinates of solutions are plotted in blue and red, ac- 

ordingly. In Fig. 4 a for σ = 0 . 26 one can see how initial in-phase

scillations after short transient switch to anti-phase two-periodic 

ynchronized mode. In Fig. 4 b for σ = 0 . 298 anti-phase oscilla- 

ions have quasiperiodic form. More complex forms of oscillations 

n chaotic mode are shown in Fig. 4 c,d,e. Here, burst-type oscil- 
Fig. 2. Bifurcation diagram of the metapop

2 
ations with alternation of in-phase and anti-phase fragments are 

learly seen. A behavior of the system (1), (2) in the order win- 

ow (see Fig. 2 right) is illustrated in Fig. 4 f for σ = 0 . 42 where

etapopulation exhibits anti-phase synchronization in 12-periodic 

orm. 

Thus, the behavior of the metapopulation modeled by the sys- 

em (1),(2) is rather complex even in the simplest case when iso- 

ated subpopulations are in the same equilibrium mode. As one 

an see, migration can essentially change dynamics and cause both 

egular (periodic or quasiperiodic) and chaotic oscillatory regimes 

n the metapopulation. In the following Section, we will show how 

nevitable random disturbances in the parameter of the migration 

ntensity impact the dynamics of metapopulation. 

. Stochastic model 

Let us consider the system (1), (2) with the random distur- 

ances in the coupling parameter σ : 

 t+1 = f (x t ) + (σ + εξt )(y t − x t ) , 
 t+1 = f (y t ) − (σ + εξt )(y t − x t ) . 

(3) 

ere, ξt is uncorrelated Gaussian noise ε with parameters E ξt = 

 , E ξ 2 
t = 1 and the noise intensity ε. 

In the present study, we focus on the analysis of impact of such 

tochastic disturbances on the periodic oscillatory regimes. 

.1. How noise impacts 2-cycle 

First, consider the stochastic system (3) with σ = 0 . 26 where 

or ε = 0 the deterministic attractor is 2-cycle (see red dots in 

ig. 3 a and time series in Fig. 4 a). 

In Fig. 5 a,b, random states (green) of the stochastic system 

3) and deterministic 2-cycle (red) are plotted for σ = 0 . 26 and 

wo values of noise intensity, ε = 0 . 01 and ε = 0 . 1 . As one can see,

ith increase in noise, the dispersion of random states around the 

eterministic attractor grows. 

In Fig. 5 c,d, corresponding time series are shown. For ε = 0 . 01 ,

he system exhibits noisy anti-phase oscillations while noise with 

ntensity ε = 0 . 1 causes temporal destruction of anti-phase syn- 

hronization. 

With the further increase of noise intensity, a new stochas- 

ic phenomenon is observed. In Fig. 6 , time series of the system 

3) solutions are shown for ε = 0 . 01 , ε = 0 . 5 , and ε = 1 . In Fig. 6 a

or ε = 0 . 01 , one can see noisy oscillations around states of 2-

ycle. For larger noise ( ε = 0 . 5 ), after some transient, the ampli-

ude of random states abruptly decreases and solutions begin to 

ocalize near the unstable equilibrium (1 , 1) (see Fig. 6 b). Such a

ocalization is temporal: one can see alternation of zones of sta- 

ilization and large-amplitude oscillations. So, the phenomenon of 

oise-induced temporal stabilization of the unstable equilibrium is 
ulation system (1),(2) with μ = 1 . 8 . 
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Fig. 3. Attractors of the metapopulation system (1),(2) with μ = 1 . 8 : a) the equilibrium (1,1) for σ = 0 . 08 (blue), 2-cycle for σ = 0 . 26 (red), two-torus for σ = 0 . 298 (orange) 

and 22-cycle for σ = 0 . 33 (green); two-piece chaos for b) σ = 0 . 353 and c) σ = 0 . 362 ; one-piece chaos for d) σ = 0 . 366 and e) σ = 0 . 413 ; f) 12-cycle for σ = 0 . 42 . (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

o

f

a

t

p

s

(

t  

(

i

T

t  

z

o

(

c  

i

i

3

 

I  

r

c  

s

p

m

s

y

t  

d

f

t

ε  

o

m

f

i

f

m

a

3

0  

σ
c

i

s  

t

bserved. With the further increase of noise intensity (see Fig. 6 c 

or ε = 1 ), the duration of the stabilization sections is reduced. 

Results of the statistical analysis of this stochastic phenomenon 

re shown in Fig. 7 in detail. Here, we present the σ -zone where 

he system (1), (2) possesses 2-cycles as attractors. Figure 7 a shows 

lots of the mean square deviation D of the random states of the 

tochastic system (3) from the unstable deterministic equilibrium 

1,1) versus noise intensity for four values of the coupling parame- 

er: σ = 0 . 11 (blue), σ = 0 . 16 (red), σ = 0 . 2 (green), and σ = 0 . 26

orange). Here, one can see a general law: under increasing noise 

ntensity, ε-zone in which the deviation is close to zero appears. 

his indicates the noise-induced localization of random states near 

he unstable equilibrium (1,1). As can be seen in Fig. 7 a, after ε-

one of stabilization, the function D begins to grow. 

Figure 7 b shows plots of the probability p of the residence 

f random states of the stochastic system (3) in the small circle 

x − 1) 2 + (y − 1) 2 ≤ 10 −8 with the unstable equilibrium (1,1) as a 

enter. As can be seen, and from the point of view of the probabil-

ty distribution, the ε-zone where the noise stabilizes the system 

s rather narrow. 

.2. How noise impacts 22-cycle 

Consider how noise impacts the system (1), (2) with σ = 0 . 33 .

n the deterministic case ( ε = 0 ), for σ = 0 . 33 , the system exhibits

egular oscillatory regime with 22-cycle as attractor. States of this 

ycle are shown in Fig. 8 a along with x, y -time series. As can be

een, oscillations of densities in sub-populations occur in anti- 

hase regime. 
3 
With increasing intensity of noise, two stages can be deter- 

ined in the change of the behavior of the metapopulation. These 

tages are seen in Fig. 8 b where random states and corresponding 

 -time series are shown for three values of the noise intensity. 

For weak noise, random solutions slightly oscillate near the de- 

erministic 22-cycle (see blue points for ε = 0 . 0 0 03 in Fig. 8 b). Un-

er increasing noise, the first stage of the qualitative stochastic de- 

ormation of the system dynamics begins: the system transits to 

he more complicated regime of noisy 2-torus (see red points for 

 = 0 . 005 in Fig. 8 b). With further increase of noise, the third stage

ccurs: separate parts of this 2-torus merge because of stochastic 

ixing of random states, and the joint probabilistic distribution is 

ormed (see green points for ε = 0 . 05 in Fig. 8 b). 

These stochastic transformations are accompanied by changes 

n values of the Lyapunov exponent �(ε) shown in Fig. 8 c. The 

unction �(ε) monotonously increases and becomes positive. This 

eans that system dynamics transforms from regular to chaotic 

lready at the first stage of stochastic deformation. 

.3. How noise impacts 12-cycle 

Consider now a parameter zone near the bifurcation value σcr = 

 . 413163 . As can be seen in bifurcation diagram ( Fig. 2 , right), as

passes σcr from left to right, the deterministic system undergoes 

risis bifurcation with the sharp transformation of chaotic attractor 

nto the regular 12-cycle. 

Examples of such attractors near the crisis bifurcation σcr are 

hown in Fig. 9 . We will study the effect of noise on attractors in

he order window located to the right of the point σcr using as 
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Fig. 4. Oscillatory modes of system (1), (2) . 

Fig. 5. Random states (green) of the stochastic system (3) with σ = 0 . 26 a) for ε = 0 . 01 ; b) for ε = 0 . 1 . Points of the deterministic 2-cycle are shown by red. In c), d), 

corresponding time series are shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

4 
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Fig. 6. Time series of x - and y -coordinates of solutions of the stochastic system (3) with σ = 0 . 26 for a) ε = 0 . 01 , b) ε = 0 . 5 , c) ε = 1 . 

Fig. 7. Noise-induced temporal stabilization of the equilibrium (1,1): a) mean-square deviation D of random states of the system (3) from the equilibrium (1,1) for σ = 0 . 11 

(blue), σ = 0 . 16 (red), σ = 0 . 2 (green), and σ = 0 . 26 (orange); b) probability of the residence of random states in the circle (x − 1) 2 + (y − 1) 2 ≤ 10 −8 for the same set of σ . 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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 key example the 12-cycle observed for σ = 0 . 42 . States of this

eterministic cycle are shown by blue points in Fig. 10 . 

For weak noise, random states are localized near the determin- 

stic cycle (see green points for ε = 0 . 003 in Fig. 10 a). 

Under increasing noise, sharp qualitative change in the proba- 

ilistic spatial distribution of random states occurs. This distribu- 

ion is shown by green in Fig. 10 b for ε = 0 . 02 . As can be seen, the

patial location of random states looks similar to the deterministic 

haotic attractor shown in Fig. 9 for σ = 0 . 41316 . 

Background of this stochastic phenomenon is related to the 

eculiarities of transient processes in the original deterministic 

odel. Indeed, a type of the convergence to the attractor (12-cycle 

n considered case) significantly depends on the initial state. This 

s illustrated in the Fig. 11 for σ = 0 . 42 . Here, by blue dot, the

oint x̄ = 0 . 27138 , ȳ = 1 . 61401 of the stable deterministic 12-cycle

s shown. Each state of this cycle becomes a stable equilibrium in 

he system (1), (2) in 12 steps. In Fig. 11 by green color we show

asin of attraction of ( ̄x , ̄y ) in this system in 12 steps. As can be

een, this basin contains the solid subdomain A . The complement 

has a fractal riddled-like structure [10,32] . 

These two domains A and B allow us to separate two types of 

ransients processes. Indeed, for initial data from the zone A , so- 

utions of the system (1), (2) in 12 steps quickly tend to the equi-

ibrium ( ̄x , ̄y ) . This is illustrated in Fig. 12 where states of the en-

emble of solutions of the deterministic system starting at t = 0 

rom the nodes of the uniform grid on the red square [0 . 23 , 0 . 25] ×
1 . 57 , 1 . 585] ⊂ A are plotted. This red square is shown in the

ig. 11 . 

It should be noted that another type of the transient process 

or solutions starting in B is observed. In Fig. 13 , states of the en-

emble of system solutions starting at t = 0 from the nodes of the 

niform grid on the blue square [0 . 25 , 0 . 27] × [1 . 54 , 1 . 555] ⊂ B are

lotted. In this transient process, metastable distribution similar to 

he chaotic attractor ( Fig. 9 ) appears. 

So, the domain A can be associated with a zone of regular dy- 

amics in contrast with the domain B where chaotic transients are 
5 
bserved. Such a dichotomy of deterministic behavior allows one 

o explain the phenomenon of the stochastic generation of random 

istributions of the complex spatial form as in Fig. 10 . The transi- 

ion from the noisy 12-cycle ( Fig. 10 a) to the complex spatial dis- 

ribution ( Fig. 10 b) can be analysed by the method of confidence 

omains. 

The method of confidence domains allows us to approximate 

he spatial dispersion of random solutions around the determinis- 

ic attractor. In this approximation, stochastic sensitivity of the at- 

ractor to random disturbances is a key point. The stochastic sen- 

itivity technique for regular (equilibria, cycles, tori) and chaotic 

ttractors was elaborated in [33–35] . The method of confidence 

omains (ellipses, ellipsoids, bands, tori) was effectively used for 

he analysis of various stochastic phenomena in nonlinear systems 

36–39] . 

In Fig. 11 , confidence ellipses around ( ̄x , ̄y ) are plotted for ε =
 . 003 and ε = 0 . 02 . The smaller ellipse totally belongs to the do-

ain A while the larger ellipse partially occupies the domain B. 

his arrangement signals that for ε = 0 . 003 the stochastic system 

ill exhibit noisy 12-cycle with small deviations from its determin- 

stic states whereas for ε = 0 . 02 the new stochastic attractor with 

he complex spatial form will be generated. This analytical predic- 

ion is in a good agreement with results of the direct numerical 

imulation. 

Let us consider how this stochastic transformation of the proba- 

ilistic distribution is related to the change of the largest Lyapunov 

xponent �. In Fig. 14 , the plot of the �(ε) is shown in red for

he considered case σ = 0 . 42 . As can be seen, with the increase

f noise intensity, �(ε) grows and changes its sign from minus to 

lus. Note that �(0 . 003) is negative whereas �(0 . 02) is positive. It

eans that for ε = 0 . 003 the stochastic attractor is regular but for

 = 0 . 02 the system dynamics is chaotic. The noise-induced tran- 

ition from order to chaos can be seen in Fig. 14 for other values

f σ . As one can see, the closer σ to the crisis bifurcation border 

cr = 0 . 413163 the smaller noise causes the transition from order 

o chaos. 
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Fig. 8. Stochastic system (3) with σ = 0 . 33 : a) states and corresponding time series for 22-cycle of the deterministic system; b) random states and time series for different 

values of the noise intensity; c) largest Lyapunov exponent � versus noise intensity ε. 
6 
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Fig. 9. Attractors of the deterministic system (1), (2) near the crisis bifurcation σcr = 0 . 413163 : chaotic attractor (green) and 12-cycle (blue). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Random states (green) of the stochastic system (3) with σ = 0 . 42 and a) ε = 0 . 003 , b) ε = 0 . 02 . States of the deterministic stable 12-cycle are plotted by blue points. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Basin for μ = 1 . 8 , σ = 0 . 42 and confidence ellipses for ε = 0 . 003 and ε = 0 . 02 . Fiducial probability P = 0 . 99 . 

Fig. 12. States of the system with μ = 1 . 8 , σ = 0 . 42 starting at t = 0 from the nodes of the uniform grid on the red square [0 . 23 , 0 . 25] × [1 . 57 , 1 . 585] . (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 

7 
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Fig. 13. States of the system with μ = 1 . 8 , σ = 0 . 42 starting at t = 0 from the nodes of the uniform grid on the blue square [0 . 25 , 0 . 27] × [1 . 54 , 1 . 555] . 

Fig. 14. Largest Lyapunov exponent for the stochastic system versus noise intensity 

ε. 
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onclusion 

In our paper, we studied transformations of the dynamical 

egimes in the metapopulation under variation of the intensity 

f migration and random disturbances. As a mathematical model, 

e used two coupled Ricker maps in the equilibrium mode. It 

as shown how under increasing coupling the initial deterministic 

odel exhibits a rich variety of dynamical regimes, both regular 

nd chaotic. It was revealed that under random forcing, the sys- 

em demonstrates the following stochastic phenomena: (i) noise- 

nduced destruction of anti-phase synchronization, (ii) temporal 

tabilization of the unstable equilibrium, (iii) transitions from or- 

er to chaos. To analyze these phenomena parametrically, we used 

tatistics extracted from the direct numerical simulation, and the 

heoretical approach based on the stochastic sensitivity function 

echnique. In this analysis, it was shown that chaotic transients 

nd fractal riddled basins play a special role. It is worth noting that 

his approach can be utilized for the analysis of more complicated 

etapopulations. 
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