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Processes of the cold-flame combustion of a mixture of
two hydrocarbons are studied on the base of a three-
dimensional nonlinear dynamical model. Bifurcation
analysis of the deterministic model reveals mono-
and bistability parameter zones with equilibrium
and oscillatory attractors. For this model, effects
of random disturbances in the bistability parameter
zone are studied. We show that random forcing
causes transitions between coexisting stable equilibria
and limit cycles with the formation of complex
stochastic mixed-mode oscillations. Properties of
these oscillatory regimes are studied by means of
statistics of interspike intervals. A phenomenon of
anti-coherence resonance is discussed.

This article is part of the theme issue ‘Transport
phenomena in complex systems (part 2)’.

1. Introduction
The study of complex combustion modes is a fundamental
problem of thermochemistry [1,2]. An important step
in understanding the general mechanisms of complex
combustion processes was the transition to the study
of mathematical models that allows us to describe the
processes of chemical thermokinetics using differential
equations. The foundations of mathematical modelling
and analysis of thermokinetics were laid out in the works
of Semenov [3], Zeldovich [4], Frank-Kamenetsky [5],
Amundson [6], Aris [7,8], and their followers (see [9,10]
and references therein).

2022 The Author(s) Published by the Royal Society. All rights reserved.
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A wide range of two-dimensional dynamic models are now known that describe the kinetics
of these reactions in terms of reactant concentration and reactor temperature [11–16]. From a
mathematical point of view, the diversity of kinetic regimes is connected with the appearance
of self-oscillatory regimes and multistability with the coexistence of several attractors of different
types. A study of these kinetic regimes is based on the theory of bifurcations and analysis of
basins of attraction. It is well known that in dynamical models with strong nonlinearity even
seemingly small random disturbances can complicate behaviour and cause stochastic transport
[17–19] with various unexpected noise-induced effects [20–29]. Here, the phenomena of coherence
and anti-coherence resonance attract attention of researchers [30–36].

Stochastic disturbances in nonlinear models of thermochemical processes can generate abrupt
changes in temperature and concentration with the appearance of complex oscillatory regimes
[37–41]. At present, mathematical modelling of the combustion processes of mixtures of reagents
is a challenging problem of modern thermochemistry [10,42–45]. To simulate the combustion
process of a mixture of two reagents, systems of three differential equations are used, in which, as
is known, not only periodic but also quasi-periodic and chaotic oscillations are possible.

A significant number of investigations are devoted to the study of the dynamic processes of
combustion of hydrocarbon mixtures. In the present paper, we investigate a three-dimensional
model of the cold-flame combustion of a mixture of two hydrocarbons. This simple conceptual
model was proposed in [46] to describe the self-oscillation regime of the cool-flame combustion
of an n-heptane-isooctane mixture. Numerical simulations based on this model have shown good
qualitative agreement with experimental data [47]. A parametric analysis of this deterministic
model is presented in [10]. The present paper aims to study how noise affects the system and
generates complex oscillatory modes.

In §2, the deterministic features of the model are described. In §3, we study effects of random
disturbances on the model in the parameter region where the initial deterministic system is
bistable. We show that under noise, transitions between coexisting stable equilibria and limit
cycles arise that form stochastic mixed-mode oscillations. Properties of these complex oscillatory
regimes are studied by means of statistics of interspike intervals.

2. Deterministic model
Consider the three-dimensional model of the cold-flame combustion of a mixture of two
hydrocarbons [46]

ẋ1 = f1(y) (1 − x1) − x1

ẋ2 = f2(y) (1 − x2) − x2

and ẏ = β1f1(y)(1 − x1) + β2f2(y)(1 − x2) + (1 − y) − s(y − ȳ),

⎫⎪⎪⎬
⎪⎪⎭

(2.1)

where

fi(y) = Dai exp
[
γi

(
1 − 1

y

)]
, i = 1, 2.

Here, the variables x1 and x2 correspond to the concentrations of two reagents (n-heptane and
isooctane), and y is the temperature. Dai, βi, γi, s, ȳ are dimensionless parameters of the model. In
this paper, following [10], we fix

Da1 = 0.14, Da2 = 0.001, β1 = 0.25, β2 = 0.5, s = 2, ȳ = 1, γ2 = 40,

and study the dynamics of the system varying the parameter γ1.
Figure 1 shows the bifurcation diagram of the model (2.1). The system has one equilibrium

point, which is stable in the regions γ1 < B2 ≈ 47.71 and γ1 > B3 ≈ 55.29. The equilibrium switches
its stability due to two Andronov–Hopf (AH) bifurcations: via the subcritical AH bifurcation at
the point γ1 = B2 an unstable limit cycle arises, and at the point γ1 = B3 due to the supercritical AH
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Figure 1. Bifurcation diagram of system (2.1) in dependence on the parameter γ1: (a) y-coordinates of stable (green solid)
and unstable (red dashed) equilibria, minimal and maximal values of y-coordinate along stable (blue solid) and unstable
(blue dashed) limit cycles; (b) zoom into the zone of bistability; (c) period of limit cycles. B1 (γ1 ≈ 47.46) is the point of the
saddle-node bifurcation of limit cycles, B2 (γ1 ≈ 47.71) is the subcritical Andronov–Hopf bifurcation point, B3 (γ1 ≈ 55.29) is
the supercritical Andronov–Hopf bifurcation point. (Online version in colour.)

bifurcation a stable limit cycle is born. The stable and unstable limit cycles coincide and disappear
at the point γ1 = B1 ≈ 47.46 due to the saddle-node bifurcation of the limit cycles.

Thus, the system (2.1) has three qualitatively different types of behaviour. For γ1 < B1 and γ1 >

B3, the system is monostable, and the only attractor is the stable equilibrium. In the parameter
zone γ1 ∈ (B1, B2), the dynamic regime is bistable: the stable equilibrium coexists with the stable
limit cycle, and phase trajectories tend to one or another attractor depending on initial conditions.
For γ1 ∈ (B2, B3), the system is monostable, and the attractor is the stable limit cycle. Figure 2
displays three typical phase portraits of the deterministic system (2.1) for γ1 = 47.4 (monostability
with the stable equilibrium), γ1 = 47.5 (bistability), and γ1 = 47.8 (monostability with the stable
limit cycle).
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Figure 2. Phase portraits of the deterministic system (2.1) (in projection on the x2 − y-plane): (a) γ1 = 47.4 (stable
equilibrium); (b) γ1 = 47.5 (coexistence of stable equilibrium and limit cycle); (c) γ1 = 47.8 (stable limit cycle). Blue lines
show stable limit cycles, green circles mark positions of stable equilibria, black and red lines show phase trajectories. (Online
version in colour.)

These features of the deterministic model play an important role in understanding the
stochastic phenomena that arise when the system is exposed to random disturbances.

3. Variability of complex oscillatory regimes in stochastic model
Let us study the influence of random disturbances on the system (2.1). For this purpose consider
the stochastic model

ẋ1 = f1(y)(1 − x1) − x1

ẋ2 = f2(y)(1 − x2) − x2

and ẏ = β1f1(y)(1 − x1) + β2f2(y)(1 − x2) + (1 − y) − s(y − ȳ) + εξ (t),

⎫⎪⎪⎬
⎪⎪⎭

(3.1)

where the random component is described by the standard white Gaussian noise ξ (t) with
probabilistic properties 〈ξ (t)〉 = 0, 〈ξ (t)ξ (t + τ )〉 = δ(τ ) and the intensity ε.

In this paper, we focus on the noise effects in the bistability zone γ1 ∈ (B1, B2) of the parameter
space, where in the deterministic system (2.1), the stable limit cycle and the stable equilibrium
coexist.

Consider first the value γ1 = 47.5. Figure 4 shows random trajectories of the system (3.1) that
start from the deterministic limit cycle and the corresponding time series y(t). For a relatively
small noise intensity ε = 0.0001 (figure 4a), the trajectories locate near the limit cycle, and the
system has a large amplitude oscillatory mode. For a greater noise ε = 0.0002 (figure 4b), one
can observe that the trajectories leave the limit cycle and approach the equilibrium, so that the
large amplitude oscillations switch to the small amplitude ones. Thus, for this level of random
disturbances, a noise-induced transition from the basin of attraction of the limit cycle to the basin
of attraction of the equilibrium arises. With a further increase of the noise intensity (see figure 4c
for ε = 0.0005), backward transitions from the basin of attraction of the equilibrium to the one of
the limit cycle appear so that the stochastic system shows mixed-mode oscillations.

Consider also the parameter value γ1 = 47.6 and stochastic trajectories starting from the stable
equilibrium (figure 3). For a small noise level ε = 0.0001 (figure 3a), one can observe small-
amplitude oscillations near the equilibrium. With an enhancement of the noise intensity (see
figure 3b for ε = 0.0003), the stochastic trajectories leave the basin of attraction of the equilibrium
and move to the basin of attraction of the limit cycle, wherein the small-amplitude oscillations
switch to large-amplitude ones. For the greater noise level ε = 0.0005 (figure 3c), the backward
transitions to the basin of attraction of the limit cycle are observed. Such mutual transitions
between the attractors form the mixed-mode oscillations.
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Figure 3. Projections of system (3.1) stochastic trajectories on the x2 − y-plane (above) and corresponding time series y(t)
(below) starting from the stable equilibrium forγ1 = 47.6: (a) ε = 0.0001, (b) ε = 0.0003 (c) ε = 0.0005. (Online version in
colour.)
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Figure 4. Projections of system (3.1) stochastic trajectories on the x2 − y-plane (above) and corresponding time series y(t)
(below) starting from the stable limit cycle forγ1 = 47.5: (a) ε = 0.0001, (b) ε = 0.0002 and (c) ε = 0.0005. (Online version
in colour.)
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Figure 5. Random states (above) of the system (3.1) solutions starting from the stable equilibrium and average values (below)
of the system solutions starting from the stable equilibrium (red solid) and stable limit cycle (blue dashed) in dependence on
the parameterγ1: (a)ε = 0.0001, (b)ε = 0.0002, (c)ε = 0.0005. Green dash-dotted lines show the borders of the bistability
zone (B1, B2) of the deterministic system. (Online version in colour.)

These noise-induced changes in the dynamics are reflected in the plots of random states of
the system solutions in dependence on the parameter γ1. Figure 5 (above) displays such plots
for the stochastic trajectories that start from the equilibria for three values of the noise intensity:
ε = 0.0001, ε = 0.0002 and ε = 0.0005. One can see that under noise, the parameter region of large
amplitude oscillations expands so that such oscillations are observed for smaller values of γ1.
Noise-induced transitions to the basin of attraction of the limit cycle appear in the zone of
bistability, and moreover, for ε = 0.0005, a stochastic generation of large-amplitude oscillations
arises even in the region where the deterministic system is monostable in an equilibrium regime.

When system solutions start from the limit cycle, noise-induced transitions to the basin of
attraction of the equilibrium also appear. Details of mutual transitions between the coexisting
attractors are displayed in figure 5 (below), where the average values of the system solutions
starting from one or another attractor versus γ1 are plotted for the same values of noise as in
figure 5 (above). These plots show that with an increase of the noise intensity, the region of
bistability becomes narrower. For sufficiently large values of ε (figure 5c), the lines of average
values of solutions, starting from different attractors, coincide, i.e. the system becomes indifferent
to the choice of initial values in the formation of stochastic mixed-mode oscillations.

Let us study this stochastic phenomenon in more detail. Consider statistical properties of
temporal characteristics of oscillations, namely the mean values and the coefficients of variations
of interspike intervals. Here, by an interspike interval we imply the time between two sequential
large-amplitude excursions (spikes) away from the equilibrium. Figure 6 shows the mean values
m and the coefficients of variation CV of interspike intervals of stochastic trajectories starting from
different attractors for γ1 = 47.5 and γ1 = 47.6 in dependence on the noise intensity.

When a trajectory starts from the stable equilibrium, for small values of noise intensity, the
mean values of interspike intervals are close to infinity, because there are no large-amplitude
oscillations. With an enhanced noise level, the values of m abruptly decrease which indicates a
beginning of noise-induced transitions to the basin of attraction of the limit cycle. For trajectories
starting from the limit cycle, for a small noise, the mean values m correspond to the period of
the cycle. With an enhancement of the noise intensity, the values of m increase, which means
that interspike intervals become longer due to the transitions to the basin of attraction of the
equilibrium. The peak in values of m(ε) is most distinctly visible for the value γ1 = 47.5 (see
figure 6a, above). As the noise intensity increases further, plots of m(ε) for trajectories, starting
from different attractors, coincide, which indicated mutual transitions between the coexisting
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Figure 6. Mean values ofm and coefficients of variation CV of interspike intervals of system (3.1) trajectories starting from the
stable equilibrium (red) and stable limit cycle (blue) for (a) γ1 = 47.5 and (b) γ1 = 47.6, depending on the noise intensity ε.
(Online version in colour.)

attractors. Thus, for sufficiently large levels of noise, a phenomenon of noise-induced mixing
occurs in the system.

The plots of the coefficients of variations (see figure 6, below) show peaks that correspond to
the values of noise intensity with the largest variability in interspike intervals. This indicates
a phenomenon of anti-coherence resonance. It occurs when noise-induced transitions to the
other basin of attraction begin to appear, and the system is the most incoherent: the stochastic
oscillations have interspike intervals of different length (short if trajectories are in the vicinity of
the limit cycle, and very long if trajectories are located near the equilibrium). For greater noise
intensities, the values of CV(ε) decrease, which indicates that the stochastic oscillations become
more coherent. The lines of CV(ε), corresponding to different attractors, coincide, which indicates
mutual noise-induced transitions and mixing.

4. Conclusion
This paper is devoted to the study of the causes of the emergence of complex oscillatory
modes in combustion processes. This issue was investigated using the three-dimensional model
describing the combustion process of a mixture of two hydrocarbons. By bifurcation analysis,
we found parametric zones corresponding to various dynamic modes of mono- and bistable
behaviour associated with equilibrium and self-oscillatory attractors. It was shown how the
inevitably present random disturbances increase the variety of dynamical behaviour, giving rise
to complex mixed-mode oscillations. The paper investigated stochastic excitability and noise-
induced transitions between attractors. With the help of statistics of interspike intervals, we
demonstrated the phenomenon of anti-coherence resonance and localized a parametric zone with
high oscillatory variability.
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