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In this paper, effects of coloured noise on the stochastic
excitement in a model of the thermochemical
flow reactor are studied. Transport phenomena
associated with noise-induced generation of large-
amplitude oscillations are investigated depending on
the correlation time of coloured noise. We study
how probability of the noise-induced excitement is
related to the stochastic sensitivity of the system to
coloured noise with certain correlation characteristics.
Parameter zones of the high stochastic sensitivity are
found and discussed in connection with occurrence of
resonance.

This article is part of the theme issue ‘Transport
phenomena in complex systems (part 2)’.

1. Introduction
Transport phenomena in complex nonlinear dynamic
systems attract a considerable amount of interest from
researchers in the different domains of science and
engineering. The inevitably present random disturb-
ances, being an additional factor complicating the
transport processes, generates new, often counterintuitive
noise-induced phenomena [1–8]. Nowadays, in the
investigations of these phenomena, along with direct
numerical simulations [9], a new approach based on
the stochastic sensitivity analysis is actively elaborated
[10–16].

In studies of stochastic effects, white Gaussian
noises are commonly used as a model of random
disturbances. But white noise, which is an idealization
of fluctuations, is not always realistic and can lead
to inaccurate conclusions [17]. The lack of temporal
correlation in white noise is too strong an assumption
in many cases. Therefore, it is important to model
noise with certain correlation time. Coloured noise

2022 The Author(s) Published by the Royal Society. All rights reserved.
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is one of the widely used models where the characteristic time defines the decay of the correlation
function, and the correlation time is a key parameter.

Specific responses of systems to coloured noises have been found and studied in different
branches of natural science, for example, in biochemistry [18], lasers [19,20], volcanic
dynamics [21], seismic activity [22], population dynamics [23,24], microbiology [25] and cancer
dynamics [26].

Coloured noise can generate a wide variety of stochastic phenomena: stochastic and coherence
resonance [27,28], synchronization [29,30], phase transitions [31,32], noise-induced bifurcations
[33] and order-chaos transformations [34]. In the present paper, we study the effects of coloured
noises in the thermochemical reactions. As a basic deterministic model, we consider a system
suggested in [35] to describe thermokinetics of a homogeneous dilute mixture of gases in the
surrounding thermostat. In this model, stochastic transport in the form of the generation of
mixed-mode oscillations by white Gaussian noise was studied in [15]. The present paper is
devoted to the study of new features of stochastic excitation associated with the specifics of more
complex coloured noises operating in the system.

In §2, for the considered model, we give a short description of deterministic dynamics in
parameter zones of mono- and bistability with attractors in the form of the equilibria and
limit cycles. Detailed presentation and analysis of coloured-noise-induced excitement is given
in §3. Here, the dependence of stochastic effects on the correlation time of coloured noise is
demonstrated numerically and studied analytically on the basis of stochastic sensitivity technique
[36].

2. Deterministic dynamics
Consider a model of the thermochemical reactor with ideal mixing [35,37] in the form of the
system of two differential equations

ẋ = √
y

(
−xexp

(
− δ

y

)
+ p (1 − x)

)

and ẏ = 2
3

q
√

y
(

x exp
(

− δ

y

)
+ r (1 − y)

)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1)

where the dimensionless variables x and y describe dynamics of the concentration of the reactant
and the temperature, correspondingly.

In this paper, we fix p = 0.24, r = 0.0622, δ = 5 and change the parameter q. Under these
assumptions, the model (2.1) is quite representative and exhibits various key regimes of two-
dimensional system dynamics. For any q, the system (2.1) has the equilibrium M(x̄, ȳ) with
x̄ = 0.875207, ȳ = 1.481516.

In the variation of dynamical behaviour of the system (2.1), points q1 = 55.363 and q2 = 68.244
play a key role. Point q1 marks the saddle-node bifurcation, and q2 corresponds to the subcritical
Hopf bifurcation (see bifurcation diagram in figure 1). For q < q2, the equilibrium M is stable, and
unstable otherwise. At the point q1, a limit cycle is born that is stable for q > q1. In the present
paper, we focus on the zone 50 ≤ q ≤ q2. For 50 < q < q1, the system (2.1) is monostable with the
stable equilibrium M as a single attractor. In the interval q1 < q < q2, the system (2.1) is bistable
and possesses two attractors: the stable equilibrium M and the stable limit cycle Γ .

In figure 2, we present two typical examples of phase trajectories for these two parameter
zones.

Figure 2a for q = 55 shows characteristic features of the phase trajectories for the monostability
zone. Here, for small deviations from the stable equilibrium (filled circle), the trajectory
immediately tends to the equilibrium. If the deviation exceeds a certain threshold, the trajectory
first goes away from the equilibrium, makes large-amplitude loops, and only after that begins to
approach M. In figure 2b for q = 68 we illustrate phase trajectories for the bistability zone where
the stable equilibrium M is shown by a filled circle, and the stable cycle Γ is plotted in green.
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Figure 1. Attractors and repellers of the deterministic system (2.1). Stable (unstable) equilibria are shown by solid (dashed) red
lines; stable (unstable) limit cycles are shown by solid (dashed) green lines. (Online version in colour.)
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Figure 2. Phase portraits of the deterministic system (2.1): (a) for q= 55, (b) q= 68. Here, the stable equilibriumM is shown
by a filled circle, and the stable limit cycleΓ is plotted in green. (Online version in colour.)

Here, for small deviations from M, the trajectory immediately tends to the equilibrium whereas
for larger deviations the trajectory tends to the orbit of the stable cycle Γ .

So, for both mono- and bistability cases, there are sub- and superthreshold zones in the phase
plane. Such behaviour is typical for excitable systems. In the presence of random disturbances,
such systems exhibit a special type of stochastic transport, namely noise-induced excitement
with sharp transitions from small-amplitude oscillations around the stable equilibrium to large-
amplitude stochastic loops. This phenomenon for the stochastic variant of system (2.1) with
random disturbances modelled by white Gaussian noise was studied in [15]. In the present paper,
we will study important additional features of the stochastic excitement for random disturbances
modelled by coloured noise.

3. Stochastic dynamics
Consider the system (2.1) with additional random disturbances:

ẋ = √
y

(
−xexp

(
− δ

y

)
+ p (1 − x)

)

and ẏ = 2
3

q
√

y
(

x exp
(

− δ

y

)
+ r (1 − y)

)
+ εs(t).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)
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Figure 3. Stochastic system (3.1), (3.2) with q= 55 and ε = 0.004: (a) phase trajectories and (b) time series. (Online version
in colour.)

Here, the stochastic forcing η(t) = εs(t) of intensity ε is modelled by coloured noise s(t) with
parameters

〈s(t)〉 = 0, 〈s(t)s(t′)〉 = exp(−a|t − t′|),

where the parameter a = 1/τ is defined by correlation time τ .
This coloured noise s(t) can be simulated by the following Langevin equation:

ṡ = −as +
√

2aξ (t). (3.2)

Here, ξ (t) is the standard uncorrelated Gaussian white noise with parameters 〈ξ (t)〉 = 0,
〈ξ (t)ξ (t′)〉 = δ(t − t′). So, the stochastic term η(t) in (3.1) has the variation D(η) = 〈η2(t)〉 = ε2.

Consider how the phenomenon of the stochastic transport in the form of noise-induced
excitement in system (3.1) depends on the parameters q, a and ε. In numerical simulations of
stochastic solutions of the system (3.1), we used the Euler–Maruyama scheme with the time
step 10−4.

In figure 3, we show a behaviour of the stochastic system (3.1) with the parameter q = 55 lying
in the monostability zone where the equilibrium M is a single attractor. Here, phase trajectories
(figure 3a) and time series (figure 3b) of solutions starting at the equilibrium M are plotted for
fixed noise intensity ε = 0.004 and different values of the parameter a of the correlation time.

As can be seen, random trajectories for a = 1 (blue) and a = 0.001 (green) exhibit small-
amplitude stochastic fluctuations near the equilibrium M. For a = 0.05, trajectories (red)
demonstrate an excitable stochastic behaviour with the alternation of large-amplitude spikes and
small-amplitude fluctuations near M. So, the phenomenon of stochastic excitement significantly
depends on the correlation parameter a of coloured noise (3.2).

In figure 4, we plot phase trajectories (figure 4a) and time series (figure 4b) of stochastic systems
(3.1), (3.2) with the parameter q = 68 from the bistability zone where the equilibrium M coexists
with the stable limit cycle Γ . Here, solutions starting at the equilibrium M are plotted for smaller
noise intensity ε = 0.001 and different values of the correlation parameter a.

In this case, random trajectories for a = 10 (blue) and a = 0.001 (green) slightly fluctuate near
the equilibrium M. For a = 0.1, trajectories (red) transit to the basin of the cycle Γ and continue
to oscillate near Γ . As can be seen, in this case, the phenomenon of noise-induced excitement is
also observed and depends on the correlation parameter a. Note that for q = 68, this phenomenon
occurs under smaller noise than for q = 55.

Details of stochastic transport of random states under increasing noise intensity are shown in
figure 5a for q = 55 and in figure 5b for q = 68. A sharp increase in variance and a shift in mean
values are clearly seen here.
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Figure 4. Stochastic system (3.1), (3.2) with q= 68 and ε = 0.001: (a) phase trajectories and (b) time series. (Online version
in colour.)
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Figure 5. Random states (left) andmean values (right) of the stochastic system (3.1),(3.2) for different values of the parameter
a versus noise intensity: (a) for q= 55 and (b) for q= 68. (Online version in colour.)

For the parametric statistical analysis of the noise-induced excitement, we studied the
probability P of the exit of trajectories starting at M to the zone x ≤ x̃ during the time interval
0 ≤ t ≤ T. In our analysis, we put the threshold value x̃ = 0.75, and T = 200.

Plots of the function P(a) are shown in figure 6 for various values of q and ε. As can be seen,
plots P(a) are not monotonous and have peaks. These peaks are localized in a certain a-parameter
zone. It is the coloured noise with such a correlation parameter a that excites the system. So,
the response of the stochastic system (3.1) to the coloured noise significantly depends on the
parameter a.
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Figure 6. Probability of noise-induced excitement: (a) for q= 55, (b) for q= 68, (c) for ε = 0.004 and various q. (Online
version in colour.)
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Figure 7. Stochastic systemwith q= 55: (a) variances Dx and Dy , (b) comparison of variances with approximations Dx and Dy .
(Online version in colour.)

To study the dependence of this response on the time correlation parameter a, consider
variances Dx = 〈(x − x̄)2〉 and Dy = 〈(y − ȳ)2〉 which describe dispersions of coordinates near the
equilibrium M(x̄, ȳ). In figure 7a, values of the variances Dx (blue) and Dy (red) found by direct
numerical simulation of random solutions of the system (3.1) with q = 55, ε = 10−4 are shown
by asterisks. As one can see, peaks of the functions P(a) and Dx,y(a) are observed for the same
a-parameter zone where the system is most susceptible to noise.

To study this susceptibility to coloured noise analytically, we will use the stochastic sensitivity
function technique. A key asymptotic characteristic of the random states deviations from the
stable equilibrium is the stochastic sensitivity matrix W. This matrix is a solution [36,38]
of the algebraic equation (A 6) (see appendix), where F is the Jacobi matrix at the equilibrium,
σ = 1, the matrix G characterizes random disturbances, and a is the correlation parameter of
coloured noise. For system (3.1), (3.2), we have

W =
[

w11 w12
w21 w22

]
, F =

[
α β

qγ qμ

]
, G =

[
0
1

]
, GG� =

[
0 0
0 1

]
,

where

α = √
y

(
−exp

(
− δ

y

)
− p

)
,

β = 1
2
√

y

(
−xexp

(
− δ

y

)
+ p (1 − x)

)
− δx

y
√

y
exp

(
− δ

y

)
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Figure 8. Stochastic sensitivity of the equilibrium versus parameter a for (a) q= 50, (b) q= 55, (c) q= 60, (d) q= 65,
(e) q= 68, and versus q in (f ) for a= 0.1 (red), a= 10 (blue), a= 0.001 (green).

γ = 2
√

y
3

exp
(

− δ

y

)
,

μ = 1
3
√

y

(
x exp

(
− δ

y

)
+ r (1 − y)

)
+ 2

√
y

3

(
δx
y2 exp

(
− δ

y

)
− r

)
.

For elements of the stochastic sensitivity matrix W, we take into account w12 = w21 and rewrite
the matrix equation (A6) as a system of three scalar equations:

αw11 + βw12 = 0

qγ w11 + (α + qμ)w12 + βw22 = − β

�

and qγ w12 + qμw22 = α − a
�

,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.3)
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Figure 9. Stochastic sensitivity of the equilibriumM in system (3.1): (a) log10 w11(q, a), (b) log10 w22(q, a).

where � = a2 − (α + qμ)a + q(αμ − βγ ). Note that the equilibrium M of the deterministic system
(2.1) is exponentially stable if and only if trF = α + qμ < 0 and detF = q(αμ − βγ ) > 0, so � > 0.

The system (3.3) has the solution

w11 = β2(qμ + α − a)
q�(α + qμ)(αμ − βγ )

,

w12 = −α

β
w11

and w22 = αβqγ + (α − a)(α2 + αqμ − βqγ )
q�(α + qμ)(αμ − βγ )

.

For parameters p = 0.24, r = 0.0622, δ = 5, considered in this paper, we have

α = −0.3337748, β = −0.08304464, γ = 0.02776849, μ = 0.00489089.

Elements of the stochastic sensitivity matrix W give the following approximations:

Dx = 〈(x − x̄)2〉 ≈ ε2w11, 〈(x − x̄)(y − ȳ)〉 ≈ ε2w12, Dy = 〈(y − ȳ)2〉 ≈ ε2w22.

As can be seen in figure 7b for q = 55, analytical approximations Dx(a) = ε2w11(a) and Dy(a) =
ε2w22(a) agree well with values of variances Dx and Dy.

The dependence of the stochastic sensitivity of the equilibrium on the parameters a and q
is illustrated in figure 8. Here, dashed lines show w11 and solid lines show w22. In figure 8a–e,
functions w11(a) and w22(a) are plotted for different values of q. As can be seen, values w22(a) are
significantly larger than w11(a). These functions essentially depend on a. The distinctive feature of
these plots is the existence of sharp peaks near a = 0.1. This means that the stochastic sensitivity
of the system to coloured noise is defined by the correlation time. As can be seen in figure 8f,
stochastic sensitivity increases unlimitedly as parameter q approaches the bifurcation point q2.

More details can be seen in the two-parameter (q, a)-diagram in figure 9 where functions
log10 w11(q, a) and log10 w22(q, a) are shown by colour. These figures allow us to assume that the
system (3.1) is highly sensitive to coloured noise with the correlation parameter a close to 0.1.
As a consequence of such a high sensitivity, the system exhibits the phenomenon of stochastic
excitement presented above in figures 3–6.

Values of the parameter a corresponding to the peaks of the stochastic sensitivity and, hence,
to the phenomenon of noise-induced excitement, can be interpreted as resonance values.

4. Conclusion
It is known that in nonlinear dynamical systems coloured noise can result in specific transport
phenomena. In the present paper, we studied how the variation of correlation time of coloured
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noise influences on the phenomenon of stochastic excitement in a model of the thermochemical
flow reactor. Probabilistic analysis has shown that stochastic excitability depends significantly
on the correlation characteristics of the acting noise. For the theoretical investigation of this
dependence, we have developed a method that uses the apparatus of stochastic sensitivity. For
the time correlation parameter, a narrow zone of the high stochastic sensitivity was found. It was
shown that it is in this parameter zone that resonance phenomena of the noise-induced excitement
appear.
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Appendix A
Consider a general n-dimensional nonlinear dynamical system

ẋ = f (x, r) (A 1)

with the m-vector parameter r of random disturbances. Let the equilibrium x̄ be exponentially
stable in the unforced system with r = 0. It is assumed that random disturbances r(t) = εs(t), s =
(s1, . . . , sm)� are modelled by the following stochastic equations:

ṡi = −aisi + σi
√

2aiξi(t), ai > 0 (A 2)

forced by standard uncorrelated Gaussian white noises ξi(t) (i = 1, . . . m) with parameters 〈ξi(t)〉 =
0, 〈ξi(t)ξi(t′)〉 = δ(t − t′). Here, r(t) is a coloured noise of the noise intensity ε, and si(t) are scalar
uncorrelated coloured noises with parameters

〈si(t)〉 = 0, 〈si(t)si(t
′)〉 = σ 2

i exp(−ai|t − t′|), τi = 1
ai

.

Parameters ai define correlation times τi of these coloured noises.
For asymptotics y(t) = limε→0((xε(t) − x̄)/ε) of deviations of the solution xε(t) of the stochastic

dynamical system
ẋ = f (x, εs)

from the equilibrium x̄, one can write the stochastic linear extension system

ẏ = Fy + Gs

and
ṡ = −As + Cξ (t).

Here,

F = ∂f
∂x

(x̄, 0), G = ∂f
∂r

(x̄, 0)

and

A =

⎡
⎢⎢⎣

a1 0
. . .

0 am

⎤
⎥⎥⎦ , C =

⎡
⎢⎢⎣

σ1
√

2a1 0
. . .

0 σm
√

2am

⎤
⎥⎥⎦ , ξ =

⎡
⎢⎢⎣

ξ1
...

ξm

⎤
⎥⎥⎦ .

For the matrix Z = E zz� of second moments for the extended (n + m)-dimensional vector z = [ y
s
]
,

one can write the system [36,38]

Ż = ΦZ + ZΦ� + SS�, Φ =
[

F G
O −A

]
, S =

[
O
C

]
. (A 3)
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...............................................................

For the stable x̄ and positive ai, the system (A3) has a unique stable stationary solution Z
satisfying the following matrix equation:

ΦZ + ZΦ� + SS� = 0.

For blocks W = E yy�, M = E ys�, B = E ss� of the matrix Z =
[

W M
M� B

]
, one can write the following

system:
FW + WF� + GM� + MG� = 0

FM + GB − MA = 0

and AB + BA = 2AQ.

⎫⎪⎪⎬
⎪⎪⎭ (A 4)

Here, Q = diag[σ 2
1 , . . . , σ 2

m]. Excluding B = Q from the third equation of (A4), we have

FW + WF� + GM� + MG� = 0

and FM + GQ − MA = 0.

}
(A 5)

The matrix W defines the stochastic sensitivity of the equilibrium x̄, and can be used for
approximation

cov(xε(t), xε(t)) ≈ ε2W.

In the case when the coloured noise s is scalar and modelled by the single equation

ṡ = −as + σ
√

2aξ (t),

we have Q = σ 2, A = a and M = −σ 2(F − aI)−1G. In this case, the stochastic sensitivity matrix W
can be found from the equation

FW + WF� = σ 2[GG�(F� − aI)−1 + (F − aI)−1GG�]. (A 6)
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