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How chains and rings affect the dynamic magnetic susceptibility of a highly clustered ferrofluid
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The dynamic magnetic susceptibility, χ (ω), of a model ferrofluid at a very low concentration (volume fraction,
approximately 0.05%), and with a range of dipolar coupling constants (1 � λ � 8), is examined using Brownian
dynamics simulations. With increasing λ, the structural motifs in the system change from unclustered particles,
through chains, to rings. This gives rise to a nonmonotonic dependence of the static susceptibility χ (0) on λ and
qualitative changes to the frequency spectrum. The behavior of χ (0) is already understood, and the simulation
results are compared to an existing theory. The single-particle rotational dynamics are characterized by the
Brownian time, τB, which depends on the particle size, carrier-liquid viscosity, and temperature. With λ � 5.5,
the imaginary part of the spectrum, χ ′′(ω), shows a single peak near ω ∼ τ−1

B , characteristic of single particles.
With λ � 5.75, the spectrum is dominated by the low-frequency response of chains. With λ � 7, new features
appear at high frequency, which correspond to intracluster motions of dipoles within chains and rings. The peak
frequency corresponding to these intracluster motions can be computed accurately using a simple theory.
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I. INTRODUCTION

A fundamental property of a magnetic material is its re-
sponse to an applied magnetic field. The ability to tune the
electrical, optical, magnetic, rheological, and thermal prop-
erties of magnetic fluids with fields has led to manifold
applications [1]. Magnetic fluids include colloidal suspen-
sions of ferromagnetic or superparamagnetic particles in a
nonmagnetic carrier liquid (ferrofluids). One important prop-
erty is the dynamic response of the fluid magnetization to an
ac magnetic field. If the field is weak, then the linear response
is defined by the initial dynamic magnetic susceptibility,
χ (ω), which consists of real (in-phase, χ ′) and imaginary
(out-of-phase, χ ′′) parts. Power dissipation is proportional
to χ ′′ [2], and so magnetic fluids can be heated in situ to
provide localized heating, such as in magnetic hyperthermia
treatments of diseased tissue [3–7].

Many studies have been carried out to understand how
material properties affect the dynamic magnetic susceptibil-
ity of magnetic fluids [8–10], and there continues to be a
lot of activity in the area. The dynamics of noninteracting
ferromagnetic particles are governed by the Brownian rota-
tion mechanism [1], with a characteristic rotation time τB =
πησ 3/2kBT , where η is the carried-liquid viscosity, σ is the
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particle diameter, kB is Boltzmann’s constant, and T is the
temperature. In this case, the magnetic response is known
exactly, and the theoretical results can be applied to typical
ferrofluids at low concentrations. The case of superparamag-
netic particles introduces the complication of there being both
Brownian rotation and Néel relaxation mechanisms [1,11],
and this is not considered here.

A lot of recent theoretical work has focused on the role
of interactions between particles, which generally lead to an
increase in the characteristic rotational time scales, due to
correlations between particles in transient clusters. Conse-
quently, the peak in χ ′′—corresponding to maximum power
dissipation—shifts to a lower frequency. One of the most
successful approaches is the dynamical modified mean-field
theory devised by Ivanov and coworkers [12] and subse-
quently tested against experimental measurements [13–15]
and computer simulations [16]. An extension of this ap-
proach has been made to treat a combination of static and
ac (probing) magnetic fields [17,18]. The basic idea is that
the local field experienced by a single particle is a super-
position of the applied field(s) and the field due to the
magnetization of the rest of the particles. The method for
calculating the latter contribution is based on the Yvon-
Born-Green equation and well-controlled approximations for
the pair distribution function from statistical mechanics [19].
Improvements have been proposed and tested recently [20],
but the applicability of the theory is limited to the regime
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where there is no extensive clustering of particles into chains
and rings.

The extent of clustering is mainly controlled by the inter-
action strength, characterized by the dipolar coupling constant
λ = μ0μ

2/4πσ 3kBT , where μ0 is the vacuum permeability
and μ is the magnitude of the magnetic dipole moment on
a particle. Roughly speaking, cluster formation is favored
when λ � 4 [21–25]. The focus of this work is the large-λ,
low-concentration regime, where chains and rings are the
predominant, self-assembled structural motifs [26–29]. The
initial static magnetic susceptibility has been shown to be
highly sensitive to the formation of such clusters [30]. At a
low concentration and high temperature (low λ), the particles
are unclustered, and the static susceptibility is close to the
Langevin susceptibility for noninteracting particles. As the
temperature is decreased (λ is increased), chains form, and
this increases the susceptibility above the Langevin value
because the chains possess large net magnetic moments.
Eventually, the chains close up to form rings, and since these
have negligible net moments, the susceptibility decreases be-
low the Langevin value. The net result is a nonmonotonic
dependence of the susceptibility on λ.

The structure and dynamics in the highly structured regime
have been surveyed comprehensively using computer simula-
tions, and strong effects of cluster formation on the diffusion
coefficient, viscosity, and intermediate scattering function
have been uncovered [31]. The aim of the current work is
to demonstrate the effects of clusters on the dynamic mag-
netic response, using Brownian dynamics (BD) simulations
and analytical theory. Clusters give rise to new complexity
in χ (ω), with a range of characteristic time scales arising
from a mixture of single-particle rotations, chain rotations,
and motions of particles within chains and rings.

The rest of this article is organized as follows. The model
and methods are detailed in Sec. II, including the basic model
parameters (Sec. II A), the BD simulation protocol (Sec. II B),
and a theory of the static susceptibility (Sec. II C). Section III
contains the results for the static susceptibility (Section III A),
the dynamic susceptibility (III B), and a theory of the high-
frequency dynamic response (III C). Section IV concludes
the article.

II. MODEL AND METHODS

A. Model

The ferrofluid is modeled as a system of N spherical par-
ticles confined to a volume V and at temperature T . Each
particle carries a central, point dipole moment μ. The inter-
action between dipoles is given by

ud
i j = μ0

4π

[
(μi · μ j )

r3
i j

− 3(μi · ri j )(μ j · ri j )

r5
i j

]
, (1)

where μ0 is the vacuum permeability, ri is the position vector
of particle i, and ri j = r j − ri is the separation vector between
particle i and particle j. In the BD simulations (Sec. II B),
the short-range, nonmagnetic interaction is given by the

Weeks-Chandler-Andersen (WCA) potential

uWCA
i j =

{
4ε

[(
σ
r

)12 − (
σ
r

)6] + ε, r � rm,

0, r > rm,
(2)

where ε and σ are the Lennard-Jones energy and diame-
ter parameters, respectively, and rm = 21/6σ is the position
of the minimum in the Lennard-Jones potential. The tem-
perature is fixed so that T ∗ = kBT/ε = 1. In the theoretical
treatment of the static susceptibility (Sec. II C), it is more
convenient to consider hard-sphere particles with diameter
σ . In any case, the dipolar coupling constant is defined as
λ = μ0μ

2/4πσ 3kBT , the reduced concentration is ρσ 3 =
Nσ 3/V , and the volume fraction is ϕ = πρσ 3/6. This work
is focused on a single concentration of ρσ 3 = 0.001 (ϕ =
0.052%) so that the susceptibility is comprised of noninter-
acting single-particle and cluster contributions. The dipolar
coupling constant was varied in the range 1 � λ � 8.

B. Brownian dynamics simulations of the dynamic magnetic
susceptibility

BD simulations were carried out using LAMMPS [32,33].
As explained in earlier work [16,20,34], this was achieved
by using the Langevin dynamics thermostat in LAMMPS but
with a high friction coefficient (or small damping time, t∗

damp)
so that the inertial dynamics are suppressed after a sufficiently
short time. In Lennard-Jones units, t∗

damp = 0.05, correspond-
ing to a Brownian rotation time of τ ∗

B = 1/6T ∗t∗
damp = 10/3

[16]. BD simulations were carried out with N = 4096 par-
ticles, a time step δt∗ = 0.0025, and the particle-particle
particle-mesh implementation of the Ewald sum for dipo-
lar interactions [35]. Equilibration took up to 2 × 107 time
steps, and a typical production-run length was 1 × 107 time
steps, corresponding to 7500τB. Four independent production
runs were carried out for each system, and the results were
averaged.

The static (ω = 0) susceptibility was calculated using the
formula

χ (0) = μ0〈M2〉
3V kBT

, (3)

where M = |M| and M = ∑N
i=1 μi. Linear response theory

relates the decay of spontaneous magnetization fluctuations
in the absence of a field to the response function of the
magnetization to a weak ac magnetic field (i.e., the initial
susceptibility) [19]. The dynamic susceptibility χ (ω) was
thereby obtained from the Fourier transform of the magne-
tization autocorrelation function C(t ) in zero field.

C(t ) = 〈M(t ) · M(0)〉
〈M2〉 , (4a)

χ (ω)

χ (0)
= 1 + iω

∫ ∞

0
C(t )eiωt dt . (4b)

With small values of λ and a decay time in C(t ) of the order
of τB, a direct numerical Fourier transform is sufficient. With
large values of λ, the pronounced chaining and concomitant
slow decay and statistical noise of C(t ) give rise to particular
problems in resolving the low-frequency dynamics. To get
around this problem, C(t ) was fitted by a sum of exponential
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functions, and then χ (ω) was obtained analytically. It was
found that an effective fitting function was

C(t ) = [(1 − f0) + f0 exp (−t/τ0)]
n∑

j=1

f j exp (−t/τ j ), (5)

with the constraint
∑n

j=1 f j = 1. The first factor was intro-
duced to describe any initial rapid decay of the correlation
function to a finite value (1 − f0) (shown in Sec. III B to arise
from intracluster motions), while the second factor describes
the ultimate, slow decay of the correlation function towards
0. If f0 = 0, then there is a monotonic decay, while if f0 > 0,
there is a two-step relaxation process. The suitability of this
function is demonstrated in Sec. III B. Since C(t ) is just a sum
of exponential functions, each term of the form f exp (−t/τ )
gives a contribution f /(1 − iωτ ) to the dynamic susceptibility
in Eq. (4b).

C. Theory of the static magnetic susceptibility

Increasing the dipolar coupling constant λ in the low-
concentration ferrofluid causes complicated changes to the
cluster distribution due to the balance of energy and entropy.
Chains form in the region of λ � 4 because the energetic
benefit of the head-to-tail configuration of the dipolar parti-
cles outweighs the entropic cost of binding particles together,
and so clustering minimizes the free energy. In the region of
λ � 7, the chains ‘close up’ to form rings, in order to gain
the most energetic benefit, but at the cost of losing some con-
formational entropy. The structural transitions between free
particles, chains, and rings can be described theoretically with
the help of a classical density functional theory. In this theory,
the system is modeled as an ideal mixture of noninteracting
chains and ringlike clusters, which is appropriate to the very
low concentration considered in this work. The concentration
of chains containing n particles is denoted ρc

n, and that of
rings ρr

n. A free particle corresponds to a chain with n = 1.
The Helmholtz free energy F is written as a functional of the
concentrations of clusters [30].

F [{ρc
n}, {ρr

n}]
V kBT

=
∞∑

n=1

ρc
n ln

(
ρc

nVn

eQc
n

)
+

∞∑
n=5

ρr
n ln

(
ρr

nVn

eQr
n

)
.

(6)

Here, V is the de Broglie thermal volume of a single particle,
and Qc

n and Qr
n are the temperature-dependent, internal parti-

tion functions of chainlike and ringlike clusters, respectively.
Note that Qc

1 = 1, and the ring contribution is limited to n � 5,
on the basis that smaller rings are not observed in practice
[26–29]. The cluster concentrations are constrained by the
following conservation condition:

∞∑
n=1

nρc
n +

∞∑
n=5

nρr
n = ρ. (7)

With high dipolar coupling constants, the clusters are rather
large, and the internal partition functions of both chains
and rings can be expressed in terms of the dimer partition
function, q.

Qc
n = σ 3(n−1)

( q

σ 3

)Cn

, (8a)

Cn =
n∑

k=1

n − k

k3
, (8b)

Qr
n = σ 3(n−1)

n1+3ν

( q

σ 3

)Rn

, (8c)

Rn = n

8
sin3

(π

n

) n−1∑
k=1

cos
(

2πk
n

) + 3

sin3
(

πk
n

) . (8d)

The exponent Cn takes into account the number and relative
strength of interparticle interactions within a chain of n par-
ticles: the denominator k3 reflects the cubic decrease in the
dipole-dipole interaction energy with increasing separation
along the chain. Note that C2 = 1 and hence Qc

2 = q. The ex-
ponent Rn is the exact sum of the relative interaction strengths
of an ideal circular ring of n particles [36,37], with the par-
ticle magnetic moments oriented at tangents to the circle.
The denominator in Eq. (8c) takes into account (i) the n possi-
ble ways that a ring could be opened to form a chain with the
same number of particles and (ii) the entropy loss of changing
a chain into a closed ring. The difference between the numbers
of self-avoiding paths of a chain and a ring is proportional
to n3ν [38], where ν � 0.588 is the Flory exponent for the
self-avoiding random walk. The dimer partition function was
calculated as for dipolar hard spheres with λ 	 1 [39]:

q = σ 3e2λ

3λ3

(
1 + 8

3λ
+ 23

3λ2
+ . . .

)
. (9)

Minimization of the free energy functional, (6), with the
conservation condition, (7), gives the chain and ring concen-
trations as powers of the activity z = exp (�)/V , where � is
the Lagrange multiplier, which is proportional to the chemical
potential.

ρc
n = Qc

nzn, (10a)

ρr
n = Qr

nzn; (10b)

z is found by substituting (10) into (7).
To calculate the static magnetic properties of the clustered

dipolar fluid, it is assumed that the total magnetic moment
of a ringlike cluster is equal to zero, since the magnetic flux
is closed inside the cluster. So, all magnetic particles bonded
in rings are considered ‘magnetic holes’ which do not con-
tribute to the static susceptibility of the system. The magnetic
response of a flexible n-particle chain is determined by the
reduced mean-squared magnetic moment 〈m2

n〉 [39,40]:〈
m2

n

〉 = n + 2κ (n − 1 + κn − nκ )

(1 − κ )2 , (11a)

κ ≈ coth

(
λ

2

)
− 2

λ
. (11b)

The correlation coefficient 0 � κ � 1 describes the projection
of a magnetic moment onto its neighbors in the chain, and so it
is a measure of chain flexibility. The simple analytical expres-
sion for κ is an approximation and was derived for dipolar
hard spheres in Ref. [39]. The limit κ → 0 corresponds to
a complete loss of orientational correlations between neigh-
boring particles in the chain, and hence 〈m2

n〉 → n, as for a
random walk. The opposite limit corresponds to perfect align-
ment of the particles in the chain, and in this case, 〈m2

n〉 → n2.
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Hence, the magnetic response of an inflexible chain (with
large λ) is much greater than that of a flexible chain (with
small λ). The static susceptibility is given by

χ (0) =
(

4πλ

3

∞∑
n=1

ρc
nσ

3〈m2
n

〉)(
1 + 1

3
χ c

L

)
, (12)

where χ c
L = (4πλ/3)

∑∞
n=1 ρc

nσ
3 is the Langevin susceptibil-

ity of all particles that are aggregated into chains. The first
factor is basically the Langevin susceptibility of the ideal gas
of chains, while the second factor is a modification to take
account of the interaction between each chain and the mean
field arising from all other particles in chains [41]; recall
that particles in rings are considered magnetic holes. In the
limit λ → 0, there are only free particles, and with ρc

1 = ρ,
〈m2

1〉 = 1, and χ c
L = 4πλρσ 3/3, the static susceptibility is

χ (0) = χ c
L(1 + χ c

L/3), which is the familiar, first-order mod-
ified mean-field theory result [41].

III. RESULTS

A. Static susceptibility

The ratio of the static susceptibility and the Langevin
susceptibility is plotted as a function of λ in Fig. 1(a).
The Langevin susceptibility χL = 4πρσ 3λ/3 is the result for
noninteracting particles. Figure 1(b) shows the fractions of
particles with zero, one, two, three, and four neighbors, based
on a distance criterion with a cutoff equal to the position of the
first minimum in the function r2g(r), where g(r) is the radial
distribution function (not shown). The cutoff distance varied
from 1.6σ at λ = 1 to 1.3σ at λ = 8.

The results in Fig. 1(a) are exactly in line with earlier
work [30]. Below λ � 5, the static susceptibility is very close
to the Langevin susceptibility, suggesting that the system is
comprised of weakly interacting particles. This is supported
by the simulation snapshot in Fig. 2(a) and the observation
that x0 � 1 [Fig. 1(b)].

The static susceptibility shows an enhancement in the
range 5 � λ � 6.75, which is due to the formation of chains,
as exemplified by the simulation snapshot in Fig. 2(b). Over
this range of λ, x2 rises from 0 to close to 1, corresponding
to the internal particles in the chains, while x1 is small but
nonzero, corresponding to the particles at the ends of chains.
Chains of aligned particles possess large, net dipole moments,
and these give large contributions to the magnetization fluctu-
ations. Note that the chains are not very long in this regime.
Roughly speaking, extensive aggregation is expected when
ρq � 1, and using Eq. (9), this should occur at ρσ 3 � 0.0093
with λ = 5 and ρσ 3 � 0.00081 with λ = 6.75. This explains
the lack of very long chains in Figs. 2(a) and 2(b). Using the
same distance-based criterion as for the calculation of xn, the
average cluster size is 〈n〉 = 1.1 with λ = 5 and 〈n〉 = 2.0
with λ = 6. For similar values of λ and with increasing con-
centration, the chains increase in length, overlap to form a
networklike structure, and ultimately disappear as the struc-
ture crosses over to that of a typical dense liquid [21–24].

In the range λ � 7, the number of rings increases sig-
nificantly, and since the net dipole moments are very much
smaller due to flux closure, the static susceptibility drops
rapidly as chains transform into rings. The snapshots in

FIG. 1. (a) The static susceptibility χ (0) divided by the Langevin
susceptibility χL as a function of the dipolar coupling constant λ,
for fluids with the reduced concentration ρσ 3 = 0.001. The dashed
black line represents noninteracting particles, the solid red line is
from Eq. (12), and the symbols are from BD simulations with the
nominal and effective DHS values of the dipolar coupling constant.
(b) The fractions of particles with zero, one, two, three, and four
nearest neighbors as a function of λ. In (a) and (b), the dotted black
lines show the approximate boundaries between states where the
structure is primarily unclustered particles, chains, and rings.

Figs. 2(c) and 2(d) illustrate this transformation. The average
cluster size is 〈n〉 = 10.4 with λ = 7 and 〈n〉 = 26.9 with
λ = 8. With these high values of λ, x1 is practically 0, x2

is close to 1, and the small values of x3 and x4 signal the
occasional occurrence of Y- and X-shaped defects [26–29,42].

On the basis of these three ranges, boundaries between
states dominated by unclustered particles, chains, and rings
are placed in Fig. 1 at λ = 4.5 and λ = 6.875. The full cluster
distributions and the contributions to the static susceptibility
from particles, chains, and rings have been studied in detail in
previous theoretical and simulation work [30]. For the specific
concentration studied in this work, the theoretical prediction
outlined in Sec. II C is shown in Fig. 1(a). The theoretical
and simulation results are qualitatively the same, although the
theoretical curve is shifted to higher values of λ. The reason
for this is that the theoretical model is based on a hard-sphere
short-range potential, while the BD simulations employ a soft,
WCA potential. Since the WCA particles are able to get closer
than the nominal diameter σ , the effective dipolar coupling
constant is the higher than the nominal value λ. To obtain a
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FIG. 2. Simulation snapshots for systems with the reduced concentration ρσ 3 = 0.001 and dipolar coupling constants (a) λ = 5, (b) λ = 6,
(c) λ = 7, and (d) λ = 8.

mapping between the hard-sphere and the WCA variants, the
respective dipolar coupling constants are related by equating
the two-particle partition functions, where the particles are
aligned in the ground-state, nose-to-tail conformation. The
partition function q is effectively a dimerization equilibrium
constant, and so this should provide a reasonable basis for a
mapping between the two systems:

q =
∫ ∞

0
r2 exp

[
−uWCA(r)

kBT
+ 2λ

(
σ

r

)3]
dr

=
∫ ∞

σ

r2 exp

[
2λDHS

(
σ

r

)3]
dr. (13)

Here λ is the dipolar coupling constant used in simulations,
λDHS is the effective dipolar hard sphere (DHS) value, and
the lower limit of the second integration arises from the hard-
sphere potential. Of course, these integrals do not converge
due to the (σ/r)3 factor in the dipolar interaction, but by
writing r = σ (1 + x) with x being small [43], this factor is
approximated by 1 − 3x, which is justified for strongly clus-
tered particles in close contact. With this approximation, the
integrals converge, and for each value of λ used in the BD
simulations, it is possible to find a value of λDHS which should
give rise to a similar extent of clustering. (Some example
values are listed in Table I.) In Fig. 1(a), the BD results are
shown as a function of λDHS, and as anticipated, this brings
the results closer to the DHS theory. Overall, the physical pic-
ture detailed in previous work [30] corresponds well with the
current simulation results and implementation of the theory.

B. Dynamic susceptibility

Examples of the magnetization autocorrelation function
are shown in Fig. 3. These examples illustrate the gamut of
behaviors seen in simulations. In each case, the raw simu-
lation results and multiexponential fits, (5), are shown. With
λ = 5, C(t ) looks like a single-exponential decay. With λ = 6
and 7, the decays are orders of magnitude slower and more
complex in character; these results required f0 > 0 and n = 3
in Eq. (5) to get a good fit. With λ = 8, there is a clear,
two-step relaxation process, and f0 > 0 and n = 4 gave an ad-
equate fit. Figure 3 shows that the fitted functions are faithful
representations of the simulation results.

Examples of the dynamic susceptibility are shown in
Fig. 4, for the same values of λ just discussed. With λ = 5,
there is a single peak in χ ′′ in the region of ω = τ−1

B . The
detailed dependence of the peak frequency on the dipolar cou-
pling constant in the weakly interacting regime was studied
theoretically and with simulations in earlier work [16,20].
The dynamic response is essentially that of interacting but
unclustered particles.

With λ = 6, two clear peaks in χ ′′ are in evidence: one at
ωτB � 0.0258 and the other at ωτB � 0.395. The obvious in-
terpretation is that the lower-frequency peak arises from short
chains, and the higher-frequency peak arises from unclustered
but interacting particles.

With λ = 7, the predominant peak in χ ′′ is at ωτB �
0.001 68, which again must be due to chains, but now longer
ones. There are other features at frequencies of ωτB ∼ 0.1,

TABLE I. Properties of fluids with the reduced concentration
ρσ 3 = 0.001, relevant to the calculation of the high-frequency peak
position in χ ′′(ω). U is the dipolar energy per particle, K = −2U
is the corresponding mean field, and ωmax is the position of the
high-frequency maximum in χ ′′(ω). The results labeled “BD” come
purely from the BD simulations. The results labeled “theory/BD”
are obtained using Eq. (26) and the BD values of U and K . The
results labeled “theory/chain” are for an infinite chain of particles
in its ground-state configuration. λDHS is the solution of Eq. (13).

λ λDHS U/kBT K/kBT ωmaxτB Source

7.00 7.32 −14.9 29.7 14.6 BD
14.9 Theory/BD

−19.9 39.7 19.9 Theory/chain
7.25 7.60 −16.2 32.5 18.2 BD

16.2 Theory/BD
−20.7 41.5 20.7 Theory/chain

7.50 7.88 −17.5 34.9 21.0 BD
17.5 Theory/BD

−21.6 43.3 21.6 Theory/chain
7.75 8.17 −18.5 37.0 22.0 BD

18.5 Theory/BD
−22.5 45.1 22.5 Theory/chain

8.00 8.45 −19.6 39.2 23.7 BD
19.6 Theory/BD

−23.4 46.8 23.4 Theory/chain
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FIG. 3. The magnetization autocorrelation function C(t ) for flu-
ids with the reduced concentration ρσ 3 = 0.001: (a) λ = 5; (b) λ =
6; (c) λ = 7; (d) λ = 8. The solid red line shows the raw BD simula-
tion data, and the dashed black line is a fit using Eq. (5).

1, and 10. The lower-frequency features must be due to short
chains and unclustered particles, while the higher-frequency
feature will be linked explicitly to motions within long chains
and rings (see Sec. III C). The snapshot in Fig. 2(c) shows
that there are rings, chains, and unclustered particles in
coexistence. The unclustered particles obviously contribute
significantly to the magnetization fluctuations, but not as
much as chains, since the latter carry larger net dipole mo-
ments. The ground-state (lowest-energy) conformation of a
ring has no net dipole moment. Hence, the chain contribution

FIG. 4. The dynamic susceptibility χ (ω) divided by the static
susceptibility χ (0) for fluids with the reduced concentration ρσ 3 =
0.001: (a) λ = 5; (b) λ = 6; (c) λ = 7; (d) λ = 8. The solid black line
represents the real part χ ′(ω), and the dashed red line the imaginary
part χ ′′(ω). In (d), the dotted green line and the dot-dashed blue line
show, respectively, the real and imaginary parts of the Debye function
with effective relaxation time τeff = 0.0510τB, scaled to give the
correct peak height in χ ′′.

FIG. 5. Heat map showing χ ′′(ω)/χ ′′
max from BD simulations, as

a function of λ and log10 ωτB for fluids with the reduced concen-
tration ρσ 3 = 0.001. χ ′′

max is the maximum value of χ ′′ for a given
value of λ.

to χ (ω) is absolutely dominant. But there will also be high-
frequency motions of particles within long-lived chains and
rings, which will make small contributions to the relaxation
of spontaneous magnetization fluctuations. These fluctuations
give rise to the weak high-frequency features in χ (ω).

With λ = 8, the number of chains is lower, and the num-
ber of rings is higher. Hence, the high-frequency peak in
χ ′′ should become more visible, and that is exactly what is
shown in Fig. 4. Figure 2(d) shows an almost-total absence
of unclustered particles, and hence χ ′′ no longer exhibits
intermediate-frequency features. The peak at a low frequency,
ωτB � 0.002 50, is due to a small number of long chains,
while the peak at a high frequency, ωτB � 23.7, is due to
motions within chains and rings.

The out-of-phase, imaginary part of the dynamic suscepti-
bility is summarized for all systems using a heat map, shown
in Fig. 5. To cancel out the variation in the magnitude of
the susceptibility, χ ′′(ω) for each value of λ is divided by
its maximum value. Therefore, the heat map represents the
distribution of response times, and not the magnitude of the
response, which is largely dictated by χ (0). The heat map
shows three distinct regimes. With λ � 5.5, there is just one
peak in the region of ωτB � 1, and so this is the single-
particle regime. In the range 5.75 � λ � 6.75, as the single-
particle feature diminishes with increasing λ, a low-frequency
feature emerges due to the rotational dynamics of chains;
therefore, this crossover represents a mixed single-particle–
chain regime. Finally, with λ � 7, a new high-frequency
feature emerges, and as explained above, there are two
characteristic time scales in this chain-ring regime; the
low-frequency feature arises from chain rotations, and the
high-frequency feature arises from particle motions within
chains and rings.

The peak frequencies and peak heights in χ ′′(ω) are plotted
in Fig. 6 as functions of λ. Figure 6(a) shows that the peak fre-
quencies (ωmax) can be conveniently divided into three groups:
peak 1 represents largely free particles and short chains; peak
2 represents long chains; and peak 3 represents motions within
chains and rings. This division is less clear around λ = 5.75
and 6.00, but the overall progression with increasing λ is
plausible, and the loci of peaks 1 and 2 are reminiscent
of an order parameter for a phase transition, although none
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FIG. 6. Peak positions (a) and peak heights (b) in χ ′′(ω)/χ (0)
for fluids with the reduced concentration ρσ 3 = 0.001. The peaks are
separated into three arbitrarily labeled groups (1, 2, and 3), with peak
1 representing motions of unclustered particles, peak 2 representing
motions of chains, and peak 3 representing motions within chains
and rings. In (a), the solid blue and dashed magenta lines represent,
respectively, the theory/BD and theory/chain predictions given by
Eq. (26), as detailed in Sec. III C. In (b), the peak heights χ ′′

max are
plotted relative to the static susceptibility χ (0).

exists here. The high-frequency peaks at λ � 7 are explained
quantitatively in Sec. III C, and Fig. 6(a) shows the theoretical
predictions explained therein.

Figure 6(b) shows the peak heights (χ ′′
max) relative to the

static susceptibility χ (0). In the ideal regime, χ ′′
max = χ (0)/2,

as per the prediction of the simple Debye theory. In the chain
regime, this peak contribution drops, and the peak 2 chain
contribution grows. Finally, in the ring regime, the peak 2
contribution begins to drop, and the peak 3 contribution in-
creases. These results show that, in the chain and ring regimes,
there is a spread of contributions with different weights and
characteristic frequencies, which reflects the coexistence of
various clusters.

C. High-frequency peak in χ′′

Figure 6(a) shows that with λ � 7, there is a high-
frequency peak in χ ′′ with ωmaxτB = 15–24. The precise
values are presented in Table I. The hypothesis is that the high-
frequency peak arises from single-particle motions within
clusters, under the influence of the local magnetic field aris-
ing from its neighbors. To develop a theory, it is sufficient
to consider a chain only, even though its dynamic response

is dominated by the rotation of the chain as a whole. The
dynamics within a ring will be very similar, but of course it has
no net dipole moment, and so its response will be dominated
by its internal dynamics, at least on a short time scale. On
longer time scales, fluctuations in the ring shape, opening into
chains, and exchanges of particles between clusters will come
into effect.

So, consider a single particle in a linear chain, in which
the magnetic dipole moments are preferentially aligned in the
same direction. The chain orientation is parallel to the labo-
ratory z axis. The local magnetic field arising from all of the
other particles is H = (0, 0, H ). It is convenient to consider
the motion of the chosen particle’s dipole moment in a local
xz plane, so that μ = μu, and u = (sin θ, 0, cos θ ) is a unit
orientation vector. The Langevin equation in the overdamped
limit is

L̇ = −γ ω̇ + F + R = 0, (14)

where L is the angular momentum, γ is a friction coefficient,
ω is the angular velocity, F is the torque arising from the
local magnetic field, and R is the random Brownian torque
arising from the suspending liquid. The friction coefficient is
related to the rotational diffusion coefficient and the Brownian
rotation time by γ = kBT/D = 2kBT τB. The torque from the
local field is

F = μ0(μ × H ) = −K (0, sin θ, 0), (15)

where K = μ0μH has units of energy. The statistics of the
random torques in any given direction are given by the usual
relations:

〈R(t )〉 = 0, (16a)

〈R(t )R(t ′)〉 = 2γ kBT δ(t − t ′). (16b)

With these specifications, the Brownian rotational dynamics
of the particle are given by

−γ
dθ

dt
− K sin θ + R = 0. (17)

When the magnetic particles are strongly associated and
aligned in chains, the deviations from perfect alignment are
small. It is therefore sufficient to consider the approximate
equation

−γ
dθ

dt
− Kθ + R = 0, (18)

which has a simple solution given by

θ (t ) = θ (0)e−Kt/γ + 1

γ
e−Kt/γ

∫ t

0
R(t1)eKt1/γ dt1. (19)

The single-particle motions should give a contribution to C(t )
of the form

〈u(t ) · u(0)〉 = 〈sin θ (t ) sin θ (0) + cos θ (t ) cos θ (0)〉
= 〈cos �θ (t )〉 ≈ 1 − 1

2

〈
�θ2(t )

〉
, (20)

where �θ (t ) = θ (t ) − θ (0). At long times, 〈θ (t )θ (0)〉 →
0 and hence 〈�θ2(t )〉 → 2〈θ2〉. From Eqs. (16a),
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(16b), and (19),

〈�θ2(t )〉 = 〈θ2〉(1 − e−Kt/γ )2 + kBT

K
(1 − e−2Kt/γ ). (21)

The aforementioned long-time limit implies that kBT =
K〈θ2〉, as per the equipartition theorem. The final result is
therefore

〈u(t ) · u(0)〉 = 1 − 〈θ2〉(1 − e−Kt/γ
)
. (22)

This shows that the correlation function decays to a finite
value of 1 − 〈θ2〉, because the dipole moments are aligned
within the chain. In the small-K limit, the short-time dynamics
are described by

〈u(t ) · u(0)〉 ≈ 1 −
(

K〈θ2〉
γ

)
t = 1 − Dt, (23)〈

[u(t ) − u(0)]2
〉 = 2 − 2〈u(t ) · u(0)〉 ≈ 2Dt, (24)

confirming that the rotational diffusion constant is D =
kBT/γ = 1/2τB. Equation (22) therefore shows that, in the
presence of a field, the initial decay is governed by an effective
time scale,

τeff = γ

K
=

(
2kBT

K

)
τB, (25)

and hence the position of the maximum in χ ′′(ω) should be

ωmaxτB = τB

τeff
= K

2kBT
. (26)

The dipolar interaction energy per particle, U , can be
obtained directly from the BD simulations, and identifying
the interaction between a dipole and the local field gives
K = −2U . These data are listed in Table I for 7 � λ �
8, along with ωmax extracted directly from χ ′′(ω) (labeled
“BD”) and from Eq. (26) using the BD value for K (labeled
“theory/BD”). The agreement between BD simulation results
and Eq. (26) is satisfactorily close: the results are compared
in Fig. 6(a). The corresponding Debye functions with the
effective relaxation time τeff = 0.0510τB, (25), and the same
peak height in χ ′′ are shown for λ = 8 in Fig. 4(d).

Purely theoretical predictions can be obtained for the
ground-state configuration of an infinite linear chain of par-
ticles, with perfectly aligned dipole moments, interacting via
the WCA and dipole-dipole potentials, and with T ∗ = 1. In
this case, the ground-state separation r0 of the particles mini-
mizes the function

uWCA(r)

kBT
− 2λ

(σ

r

)3
, (27)

and the dipolar energy per particle is U/kBT = −2ζ (3)λ/r3
0 ,

where ζ (3) � 1.202 is Apéry’s constant. Using the same ar-
guments as above gives the values of U , K , and ωmax labeled
“theory/chain” in Table I. The values of ωmax are plotted in
Fig. 6 for comparison with the BD and theory/BD results,
showing a good consistency between the different approaches.
The theory/BD approach is slightly better near λ = 7, and the
theory/chain approach is slightly better near λ = 8, but the
differences are not very significant.

Equation (25) is qualitatively consistent with the relaxation
of the magnetization parallel to a uniform external field (Hext)
in an ideal system of noninteracting particles [17,44,45].
There is a spectrum of relaxation times, the longest of
which is [44,45]

τeff =
[
αL1(α)

L(α)

]
τB, (28)

where α = μ0μHext/kBT is the Langevin parameter, L(α) =
coth α − 1/α is the Langevin function, and L1(α) = dL/dα.
In the strong-field limit, this becomes τeff ≈ τB/α, and so
with α being analogous to K/2kBT , the results are similar.
Essentially, a local magnetic field parallel to the dipole orien-
tation decreases the relaxation time.

IV. CONCLUSIONS

Cluster formation in low-concentration, strongly interact-
ing ferrofluids has been shown to have profound effects on the
frequency-dependent dynamic susceptibility. With increas-
ing interaction strength, the structural motifs of the system
progress from free particles, through chainlike clusters, to
ringlike clusters. The impact of this progression on the static
susceptibility is already known [30], and the present results
agree well with earlier work. Each of the motifs has its own
characteristic relaxation time scale, which manifests itself in
distinct features in the dynamic susceptibility. Free particles
have relaxation times that do not deviate significantly from
the Brownian rotation time. Chainlike clusters rotate only
very slowly, and so low-frequency features emerge in the
dynamic susceptibility. The contributions from particle mo-
tions within chains and rings become apparent once chains
close up to form rings, and these give rise to features in the
high-frequency dynamic susceptibility due to the effects of the
local magnetic fields within the clusters. The high-frequency
features can be captured quantitatively using a simple mean-
field, Brownian-dynamical equation of motion.

This study was confined to very low concentration ferroflu-
ids, so that the distinct contributions from different clusters
could be clearly discerned. An obvious extension is to study
more concentrated systems with strong interactions, where
gel-like structures are to be anticipated [46–49]. On the one
hand, χ (ω) may still show the high-frequency features arising
from particle motions within self-assembled structures. On the
other hand, gel-like structures could undergo extremely slow
relaxation, which may be out of reach of simulation. Work on
this regime is in progress.
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