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1. Introduction

Nambooripad [23], building on an approach initiated by Hall [14] and Grillet [12],

introduced the notion of a normal category as the abstract categorical model of prin-

cipal one-sided ideals of a regular semigroup. Each regular semigroup S gives rise

to two normal categories: one that models the principal left ideals of S and another

one that corresponds to the principal right ideals. Then Nambooripad devised a

structure called cross-connection that captured the nontrivial interrelation between

these two normal categories. Cross-connections form a category, and Nambooripad

proved that this category is equivalent to the category of regular semigroups.

Thus, regular semigroups have precise categorical counterparts. A natural

research program is to explore this link between semigroups and categories, by

browsing through interesting families of regular semigroups and looking how their

properties manifest in the language of cross-connections. Within this framework,

Nambooripad’s school studied cross-connections of transformation semigroups of

certain concrete species, see, e.g. [5, 6, 8, 31]. However, we believe that, taking into

account the abstract character of the category-based approach, it is more promising

to look at specializations of Nambooripad’s correspondence to important abstract

classes of regular semigroups. To the best of our knowledge, results in this direc-

tion restrict to the following so far: the first-named author and Rajan [7] char-

acterized cross-connections of completely simple semigroups and Rajan et al. [30]

studied cross-connections in normal bands. Another closely related work was also

by Rajan [29] wherein some properties of the normal categories of the inverse semi-

groups were studied, though a complete characterization was not achieved.

Here, we characterize cross-connections of locally inverse semigroups. There are

several reasons for us to focus on this particular class. First of all, locally inverse

semigroups were introduced and deeply studied by Nambooripad himself [21, 22]

(under the name pseudo-inverse semigroups) so that re-visiting them appears to

be appropriate for a paper dedicated to his memory. Second, the class of locally

inverse semigroups is of interest and importance from both the structural viewpoint

and the viewpoint of the theory of so-called e-varieties of regular semigroups. We

refer to Pastijn [26] and McAlister [20] for elegant covering theorems that reveal the

structure of locally inverse semigroups. As for the e-varietal viewpoint, the e-variety

of all locally inverse semigroups is distinguished in many aspects; in particular, it

is one of the two largest e-varieties which admit bi-free objects, see Yeh [33]. Last

but not least, we have anticipated that the categorical counterpart of such a well-

behaved sort of regular semigroups should be nice in a sense, and we believe that

the present paper provides some supporting evidence for these expectations.

In Sec. 2, we characterize the categories of principal one-sided ideals of locally

inverse semigroups as so-called unambiguous categories and describe a category

equivalence between the category of cross-connected unambiguous categories and

the category of locally inverse semigroups. In Sec. 3, we specialize our construction

to inverse semigroups to provide a new structure theorem for inverse semigroups and
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also retrieve (a weaker version of) the Ehresmann–Schein–Nambooripad Theorem.

This can be seen as completing the line of research initiated in [29]. In Sec. 4, we

relate the cross-connection structure of completely 0-simple semigroups to the Rees

Theorem; it turns out that cross-connections are nothing but sandwich-matrices.

This generalizes the results of [7] and also gives a concrete illustration for the

abstract discussion of Sec. 2. We conclude in Sec. 5 by outlining directions for

future work.

We assume some familiarity with basic notions from category theory (such as

functors and natural transformations) and semigroup theory (such as Green’s rela-

tions). For undefined notions, we refer to [15, 18] for category theory and [11, 13, 16]

for semigroups. Inevitably, we have followed the general line of and used several

results from Nambooripad’s treatise [23] but we have made a fair effort to make

the present paper understandable without studying [23] in detail.

2. Cross-Connections of Locally Inverse Semigroups

2.1. Inverse and locally inverse semigroups

Two elements a, b of a semigroup S are said to be inverses of each other if aba = a

and bab = b. A semigroup is called regular if each of its elements has an inverse.

Inverse semigroups are defined as semigroups in which every element has a unique

inverse; given an element x in such a semigroup, its unique inverse is denoted x−1.

An element e of a semigroup S is called an idempotent if e = e2, and we let

E(S) stand for the set of all idempotents of S. A band is a semigroup in which all

elements are idempotents and a semilattice is a commutative band.

Recall a classic characterization of inverse semigroups (see, e.g. [13, Theorem

II.2.6]).

Theorem 2.1. Let S be a semigroup. The following are equivalent :

(1) S is an inverse semigroup.

(2) Every R-class of S contains exactly one idempotent and every L -class of S

contains exactly one idempotent.

(3) S is regular and E(S) is a semilattice.

A regular semigroup S is locally inverse if eSe is an inverse semigroup for each

e ∈ E(S). We need further characterizations of locally inverse semigroups; for this

purpose, we require some more definitions.

Given a semigroup S, we define two preorders ≤� and ≤r on the set E(S) as

follows: e ≤� f if and only if ef = e and e ≤r f if and only if fe = e. The equiv-

alences L and R on E(S) induced by the preorders ≤� and ≤r, respectively, are
nothing but the restrictions of Green’s classic equivalences on S. The intersection

≤:=≤� ∩ ≤r is a partial order on E(S). We denote by ω(e) the order ideal of
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the set (E(S),≤) generated by e, that is, ω(e) := {f ∈ E(S) | f ≤ e}. Similarly,

ω�(e) := {f ∈ E(S) | f ≤� e} and ωr(e) := {f ∈ E(S) | f ≤r e}. A band is said to

be left [right ] normal if it satisfies xyz = xzy [respectively, xyz = yxz].

The following fact comes from [21; 26, Result 1].

Theorem 2.2. Let S be a regular semigroup. The following are equivalent :

(1) S is a locally inverse semigroup;

(2) if e, f, g ∈ E(S) are such that e (L ∪ R) f and e, f ∈ ω(g), then e = f ;

(3) for each e ∈ E(S), the set ω(e) is a semilattice;

(4) for each e ∈ E(S), the set ω�(e) forms a left normal band and the set ωr(e)

forms a right normal band.

2.2. Normal categories

For a small category C, its set of objects is denoted by vC while its set of mor-

phisms is denoted by just C. For c, d ∈ vC, the set of all morphisms from c to d

is denoted by C(c, d). We compose functions and morphisms from left to right so

that in expressions like ϕψ or γ ∗ δ etc., the left factor applies first. The identity

morphism at an object c ∈ vC is denoted 1c.

A morphism ϕ : c → d is called an epimorphism if it is left-cancellative, i.e.

for all morphisms α, β : d → e, the equality ϕα = ϕβ implies α = β. Similarly,

ϕ : c→ d is called a monomorphism if it is right-cancellative, i.e. for all morphisms

α, β : b → c, the equality αϕ = βϕ implies α = β. A morphism ϕ : c → d is called

an isomorphism if ϕψ = 1c and ψϕ = 1d for some morphism ψ : d→ c.

A preorder is a category with at most one morphism from an object to another.

A strict preorder is a preorder whose only isomorphisms are the identity morphisms.

A subcategory of a category C is a category D with vD ⊆ vC and such that

D(a, b) ⊆ C(a, b) for all a, b ∈ vD, with the same identities and composition of

morphisms. D is a full subcategory of C if D(a, b) = C(a, b) for all a, b ∈ vD.

Definition 2.1. Let C be a small category and P a subcategory of C with vP = vC.
The pair (C,P) (often denoted by just C) is a category with subobjects if:

(1) P is a strict preorder.

(2) Every morphism in P is a monomorphism in C.
(3) If ϕ, ψ ∈ P and ϕ = αψ for some α ∈ C, then α ∈ P .

In a category (C,P) with subobjects, the morphisms in P are called inclusions.

If c′ → c is an inclusion, we write c′ ⊆ c and we denote this inclusion by ι(c′, c). An
inclusion ι(c′, c) splits if there exists θ ∈ C(c, c′) such that ι(c′, c)θ = 1c′, and then

the morphism θ is called a retraction.

Definition 2.2. Let C be a category with subobjects. A normal factorization of a

morphism ϕ ∈ C is a decomposition of the form ϕ = θσι, where θ is a retraction,

σ is an isomorphism and ι is an inclusion in C. The morphism θσ is called the
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epimorphic component of the morphism ϕ and is denoted by ϕ◦. The codomain

of ϕ◦ is called the image of ϕ and the codomain of the retraction θ is called the

coimage of ϕ. We denote the coimage of ϕ by coimϕ.

Remark 2.3. In general, a normal factorization of a morphism (even when it

exists) is not unique. It may be noted that the coimage depends on the normal

factorization chosen and therefore may vary. However, as shown in [23, Proposition

II.5], for a morphism with a normal factorization, it has a unique epimorphic com-

ponent and hence a unique image. In particular, the epimorphic component (and

hence the image) is independent of the chosen normal factorization.

We record the following result which will be needed in the sequel.

Proposition 2.4 ([23, Proposition II.7]). Let C be a category with subobjects

such that every morphism has a normal factorization. Then:

(1) the inclusion of any epimorphism ϕ ∈ C is the identity morphism and every

normal factorization of ϕ is of the form ϕ = θσ, where θ is a retraction and σ

is an isomorphism;

(2) the retraction of any monomorphism ψ ∈ C is the identity morphism and every

normal factorization of ψ is of the form ψ = σι, where σ is an isomorphism

and ι is an inclusion.

Definition 2.3. Let C be a category with subobjects and d ∈ vC. A cone with apex

d is a function γ : vC → C such that:

(1) for each a ∈ vC, one has γ(a) ∈ C(a, d);
(2) ι(a, b)γ(b) = γ(a) whenever a ⊆ b.

For a cone γ, we denote by cγ the apex of γ and the morphism γ(a) is called

the component of the cone γ at a. For a cone γ, define the set

mγ := {a : γ(a) is an isomorphism}.

We refer to the set mγ as the M -set of the cone γ.

Definition 2.4. Let C be a category with subobjects. A cone γ : vC → C is called

normal if its M -set is non-empty, that is, there exists at least one a ∈ vC such that

γ(a) : a→ cγ is an isomorphism.

Definition 2.5 ([23, Sec. III.1.3]). A category C is said to be normal if:

(NC 1) C is a category with subobjects;

(NC 2) every inclusion in C splits;

(NC 3) every morphism in C admits a normal factorization;

(NC 4) for each c ∈ vC, there exists a normal cone μ such that μ(c) = 1c.
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2.3. Normal category of a regular semigroup

As mentioned in the introduction, the concept of a normal category was devised

by Nambooripad [23] to capture the structure of one-sided ideals of an arbitrary

regular semigroup in purely categorical terms.

Recall that for a given regular semigroup S, the category L(S) of the principal

left ideals of S has the set {Se : e ∈ E(S)} as the set of objects and partial right

translations (i.e. right translations restricted to a principal left ideal) as morphisms.

Namely, for each pair of principal left ideals Se and Sf , the set of all morphisms from

Se to Sf is {ρ(e, u, f) : u ∈ eSf}, where the map ρ(e, u, f) sends x ∈ Se to xu ∈ Sf .

One can easily see that ρ(e, u, f) = ρ(g, v, h) if and only if e L g, f L h and

v = gu [23, Lemma III.12]. Two morphisms ρ(e, u, f) and ρ(g, v, h) are composable

if and only Sf = Sg (i.e. if and only if f L g) and then ρ(e, u, f)ρ(g, v, h) =

ρ(e, uv, h).

Define a subcategory PL of L(S) with vPL = vL(S) and such that PL has

a morphism from Se to Sf if and only if Se ⊆ Sf , in which case there is a

unique morphism, namely ρ(e, e, f). The morphisms of the subcategory PL cor-

respond to the inclusions of principal ideals. By definition, PL is a strict pre-

order. Clearly, every morphism ρ(e, e, f) is a monomorphism. Also for morphisms

ρ(e, e, f), ρ(g, g, f) ∈ PL such that ρ(e, e, f) = ρ(h, u, g)ρ(g, g, f) in the category

L(S), we have ρ(e, e, f) = ρ(h, u, f), whence u = he = h. Therefore, the morphism

ρ(h, u, g) = ρ(h, h, g) belongs to PL. Thus, all conditions of Definition 2.1 are sat-

isfied and (L(S),PL) is a category with subobjects. Hence, the morphisms of L(S)
belonging to PL are inclusions.

Now observe that for every inclusion ρ(e, e, f), we have fe ∈ fSe so that

ρ(f, fe, e) is a morphism in L(S). Since Se ⊆ Sf , we have ef = e whence

ρ(e, e, f)ρ(f, fe, e) = ρ(e, e(fe), e) = ρ(e, (ef)e, e) = ρ(e, e, e) = 1Se.

Thus, every inclusion in the category L(S) splits, and ρ(f, fe, e) is a retraction.

It is shown in [23, Corollary III.14] that every morphism in the category L(S)
admits a normal factorization in the sense of Definition 2.2.

Now, for each a ∈ S, we define a function ρa : vL(S) → L(S) as follows:

ρa(Se) := ρ(e, ea, f), where f L a. (2.1)

It is easy to verify that the map ρa is well-defined, that is, it does not depend on

the particular choice of an idempotent generator of the left ideal Se nor on the

particular choice of an idempotent in the L -class of a. Moreover, ρa is a normal

cone with apex Sf in the sense of Definition 2.4, see [23, Lemma III.15].

In the sequel, the normal cone ρa is called the principal cone determined by

the element a. In particular, observe that, for an idempotent e ∈ E(S), we have a

principal cone ρe such that ρe(Se) = ρ(e, e, e) = 1Se.

Summarizing the above discussion, we see that the category L(S) satisfies all

conditions (NC 1)–(NC 4) from the definition of a normal category (Definition 2.5).
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2.4. Normal category of a locally inverse semigroup

Now, we aim to isolate categorical properties that distinguish locally inverse semi-

groups within the framework of Sec. 2.3.

Lemma 2.5. If S is locally inverse, every inclusion ρ(e, e, f) ∈ L(S) splits

uniquely, that is, if ϕ, ψ ∈ L(S) are such that ρ(e, e, f)ϕ = ρ(e, e, f)ψ = 1Se,

then ϕ = ψ.

Proof. Take any element g ∈ fSe such that the morphism ρ(f, g, e) satisfies

ρ(e, e, f)ρ(f, g, e) = 1Se. Then ρ(e, eg, e) = ρ(e, e, e) whence eg = e. As g ∈ fSe,

we have ge = g whence g2 = (ge)g = g(eg) = ge = g and g L e. Besides that, we

have fg = gf = g since g ∈ fSe and ef = e in view of Se ⊆ Sf . We conclude that

g ∈ ω(f). As S is locally inverse, Theorem 2.2(2) implies that each L -class of S

has at most one idempotent in common with ω(f) so that the conditions g L e

and g ∈ ω(f) uniquely define g, and hence, the retraction ρ(f, g, e).

Remark 2.6. The proof of Lemma 2.5 shows that for an arbitrary retraction

ρ(f, g, e), the element g is an idempotent in ω(f) such that g L e. Hence, Se = Sg

and so ρ(f, g, e) = ρ(f, g, g) and ρ(e, e, f) = ρ(g, g, f). We see that in L(S), every
retraction may be represented as ρ(f, g, g) and every inclusion may be represented

as ρ(g, g, f) for some g ∈ ω(f).

For an arbitrary regular semigroup S, morphisms of L(S) may admit several dif-

ferent normal factorizations. Our next lemma shows that locally inverse semigroups

behave better in this respect.

Lemma 2.7. If S is locally inverse, every morphism in L(S) has a unique normal

factorization.

Proof. Let ρ(e, u, f) with u ∈ eSf be a morphism in the category L(S). Consider
an arbitrary normal factorization ρ(e, u, f) = θσι, where θ is a retraction, σ is

an isomorphism and ι is an inclusion in L(S). According to Remark 2.6, we can

write θ = ρ(e, g, g) for some g ∈ ω(e) and ι = ρ(h, h, f) for some h ∈ ω(f). Then

σ = ρ(g, v, h) for some v ∈ gSh, and we have

ρ(e, u, f) = θσι = ρ(e, g, g)ρ(g, v, h)ρ(h, h, f).

The right-hand side is equal to ρ(e, gvh, f) = ρ(e, v, f) since v ∈ gSh, and we

conclude that u = v. Thus, each normal factorization of ρ(e, u, f) can be written as

ρ(e, u, f) = ρ(e, g, g)ρ(g, u, h)ρ(h, h, f) (2.2)

for some g ∈ ω(e) and some h ∈ ω(f).

Since ρ(g, u, h) is an isomorphism in L(S), there exists u′ ∈ hSg such that

ρ(g, u, h)ρ(h, u′, g) = 1Sg = ρ(g, g, g) and

ρ(h, u′, g)ρ(g, u, h) = 1Sh = ρ(h, h, h).
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This implies uu′ = g and u′u = h. Since uu′ = g, we have g ∈ uS; on the other

hand, as shown above u = v = gvh whence u ∈ gS. We thus conclude that g R u.

Similarly, h L u. The diagram (2.3) represents the relations between the elements

e, f, g, h, u, u′.

e
ω

u
L

��
��

��
�

R

��
��
��
�

f
ω

g

L ��
��

��
� h

R��
��
��
�

u′

(2.3)

Since S is locally inverse, Theorem 2.2(2) implies that each R-class of S has

at most one idempotent in common with ω(e) so that the conditions g R u

and g ∈ ω(e) uniquely define the element g, and consequently fix the retraction

ρ(e, g, g). Similarly, the conditions h L u and h ∈ ω(f) uniquely define the idem-

potent h, and therefore, fix the inclusion ρ(h, h, f). Moreover, as soon as g and h

are fixed, so is the isomorphism ρ(g, u, h). Altogether, the decomposition (2.2) is

unique.

Lemmas 2.5 and 2.7 show that for L(S) with S being locally inverse, the condi-

tions (NC 2) and (NC 3) from Definition 2.5 hold with uniqueness. This motivates

the next definition.

Definition 2.6. A category C is said to be an unambiguous category if:

(UC 1) C is a category with subobjects;

(UC 2) every inclusion in C splits uniquely;

(UC 3) every morphism in C admits a unique normal factorization;

(UC 4) for each c ∈ vC there exists a normal cone μ such that μ(c) = 1c.

Thus, an unambiguous category is a special version of a normal category wherein

the axioms (NC 2) and (NC 3) are strengthened by (UC 2) and (UC 3), respectively.

The following fact is straightforward.

Proposition 2.8. For every locally inverse semigroup, its category of all principal

left ideals is unambiguous.

2.5. Semigroup of normal cones of an unambiguous category

Next, we proceed to show that every unambiguous category arises as L(S) for some

locally inverse semigroup S. To this end, we use Nambooripad’s construction of the

semigroup of normal cones of a normal category and show that it produces a locally

inverse semigroup when being applied to an unambiguous category.

Given a normal category C, we denote by Ĉ the set of all normal cones in C. For
γ ∈ Ĉ, if ϕ ∈ C(cγ , d) is an epimorphism, then as in [23, Lemma I.1], we can easily
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see that the map

γ ∗ ϕ : c 	→ γ(c)ϕ for all c ∈ vC (2.4)

is a normal cone such that cγ∗ϕ = d. Using this observation, one can define a binary

composition on Ĉ as follows: for γ, δ ∈ Ĉ,
γ · δ := γ ∗ (δ(cγ))◦, (2.5)

where (δ(cγ))
◦ is the epimorphic component of the morphism δ(cγ).

Lemma 2.9 ([23, Theorem I.2]). Let C be a normal category. The set Ĉ of all

its normal cones forms a regular semigroup under the binary composition (2.5). A

normal cone μ in C is an idempotent if and only if μ(cμ) = 1cμ .

The following characterizations of the preorders ≤�,≤r and the order ≤ in the

semigroup Ĉ can be easily extracted from the discussion in [23, Sec. III.2].

Lemma 2.10. Let μ, ν be normal cones in the semigroup Ĉ. Then:
(1) ν ≤� μ if and only if cν ⊆ cμ. In particular, νL , μ if and only if cν = cμ.

(2) ν ≤r μ if and only if ν(cμ) is an epimorphism such that ν = μ ∗ ν(cμ). And

νR μ if and only if ν(cμ) is an isomorphism such that ν = μ ∗ ν(cμ).
Lemma 2.11. Let μ, ν be idempotents in the semigroup Ĉ. Then ν ≤ μ if and only

if ν(cμ) is a retraction such that ν = μ ∗ ν(cμ).
Proposition 2.12. Let C be an unambiguous category. The semigroup Ĉ of all

normal cones in C is locally inverse.

Proof. By Lemma 2.9, Ĉ is a regular semigroup. So, it suffices to show that Ĉ
satisfies condition (2) in Theorem 2.2. Thus, let μ, ν and ϑ be idempotent normal

cones in C with apices c, c1 and c2, respectively, and ν, ϑ ∈ ω(μ). By Lemma 2.11,

there exist retractions q1 := ν(c) : c → c1 and q2 := ϑ(c) : c → c2 such that

ν = μ ∗ q1 and ϑ = μ ∗ q2. We have to verify that ν = ϑ whenever ν (L ∪ R) ϑ.

First suppose that ν L ϑ. Then c1 = c2 by Lemma 2.10(1). Since C is an

unambiguous category, the inclusion ι(c1, c) = ι(c2, c) splits uniquely. So, the

retraction between c and c1 = c2 must be unique, and thus, q1 = q2. Hence,

ν = μ ∗ q1 = μ ∗ q2 = ϑ.

Now, let ν R ϑ. By Lemma 2.10(2), we have ν = ϑ ∗ ν(c2). Equating the

components at c, we have ν(c) = ϑ(c)ν(c2), that is, q1 = q2ν(c2). Dually, we have

q2 = q1ϑ(c1). Denote u := ϑ(c1) and v := ν(c2). Then, combining the equalities

q1 = q2v and q2 = q1u, we deduce q1 = q1uv. Multiplying through on the left

by the inclusion ι(c1, c), we get ι(c1, c)q1 = ι(c1, c)q1uv whence uv = 1c1 since

ι(c1, c)q1 = 1c1 by the definition of a retraction. Dually, we obtain vu = 1c2 . Thus,

we see that u is an isomorphism.

Observe that each of the decompositions q2 = q1u1c2 and q2 = q21c21c2 consti-

tutes a normal factorization of the morphism q2. But since C is an unambiguous
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category, every morphism has a unique normal factorization. This implies that

q1 = q2 also in this case. Hence, again ν = μ ∗ q1 = μ ∗ q2 = ϑ.

Two unambiguous categories are said to be isomorphic if there is an inclusion

preserving isomorphism between them. Our next theorem follows by restricting [23,

Theorem III.19] (which dealt with normal categories) to unambiguous categories.

Theorem 2.13. Let C be an unambiguous category and Ĉ its associated locally

inverse semigroup of normal cones. Define a functor F : C → L(Ĉ) as follows:

vF (c) := Ĉμ for c ∈ vC,
F (f) := ρ(μ, μ ∗ f◦, ν) for f ∈ C(c, d),

where μ, ν ∈ E(Ĉ) are such that cμ = c and cν = d. Then F is an isomorphism of

unambiguous categories.

Proposition 2.8 shows that the category L(S) of a locally inverse semigroup

S is unambiguous. Conversely, given an abstract unambiguous category C, Propo-
sition 2.12 shows that its semigroup Ĉ is locally inverse, and by Theorem 2.13,

the unambiguous category L(Ĉ) is isomorphic to C. That is, every unambiguous

category arises as the category L(S) of some locally inverse semigroup S. Thus,

we arrive at the following corollary that completely characterizes the category of

principal left ideals of a locally inverse semigroup.

Corollary 2.14. A category is isomorphic to the category L(S) for some locally

inverse semigroup S if and only if it is unambiguous.

Recall from [11] that the right regular representation of a semigroup S is the

homomorphism ρ : a 	→ ρa of S into the full transformation semigroup on the set

S. Denote the image of ρ by Sρ; then ρ : S → Sρ is a surjective homomorphism.

The next proposition follows directly from [23, Theorem III.16].

Proposition 2.15. Let S be a locally inverse semigroup. The map a 	→ ρa (where

ρa is the principal cone determined by a) defines a homomorphism ρ̃ : S → L̂(S).

Also the map ρa 	→ ρa defines an injective homomorphism φ : Sρ → L̂(S) such that

the next diagram commutes.

S

ρ̃

��
��

��
��

��
��

ρ

����
��
��
��
��

Sρ
φ

�� L̂(S)

In particular, S is isomorphic to a subsemigroup of L̂(S) via ρ̃ if and only if ρ is

injective.
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Remark 2.16. Dually, we can define the unambiguous category R(S) of principal
right ideals of a locally inverse semigroup S as follows:

vR(S) := {eS : e ∈ E(S)},
R(S)(eS, fS) := {λ(e, u, f) : u ∈ fSe},

where the partial left translation λ(e, u, f) sends x ∈ eS to ux ∈ fS. All notions

defined for the category L(S) have their natural ‘duals’ in the category R(S); in
particular, λa stands for the principal cone in R(S) determined by a ∈ S.

2.6. Unambiguous dual and cross-connections

We have seen in the previous subsections that given a locally inverse semigroup S,

the categories L(S) and R(S) are unambiguous categories. In this subsection, we

address the converse question: given two unambiguous categories C and D, whether

a locally inverse semigroup S can be constructed such that C and D are isomorphic

to L(S) and R(S), respectively. To answer this question, we first need to capture the

relationship between the unambiguous categories L(S) and R(S), in a categorical

framework. This is done via the notion of cross-connection which describes the

relationship between the categories L(S) and R(S) using a pair of functors.

To this end, first recall that for a given normal category C, its normal dual C∗ is

defined as a full subcategory of the functor category [C,Set] such that the objects

of C∗ are certain special set valued functors called H-functors.

Let μ be an idempotent cone in a normal category C. Then we define an

H-functor H(μ;−) : C → Set as follows: for c ∈ vC and g ∈ C(c, d),
H(μ; c) := {μ ∗ f◦ : f ∈ C(cμ, c)},

H(μ; g) : H(μ; c) → H(μ; d) is given by μ ∗ f◦ 	→ μ ∗ (fg)◦.
(2.6)

It can be shown [23, Lemma III.6] that the functor H(μ;−) is representable, that

is, there exists an associated natural isomorphism ημ : H(μ;−) → C(cμ,−), where

C(cμ,−) is the covariant hom-functor determined by the object cμ.

Now, we proceed to characterize the normal dual associated with an unambigu-

ous category. Given an unambiguous category C, we define the unambiguous dual

C∗ (often referred to as just dual below) as the full subcategory of [C,Set] such
that

vC∗ := {H(μ;−) : μ ∈ E(Ĉ)}.
Hence, the morphisms in C∗ are natural transformations between the H-functors.

Then [23, Theorem III.25] leads us to the following theorem.

Theorem 2.17. Let C be an unambiguous category with the dual C∗. The unam-

biguous category R(Ĉ) is isomorphic to C∗. In particular, the unambiguous dual C∗

is also an unambiguous category.
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Now, we proceed to describe how the unambiguous categories L(S) and R(S)
arising from the same locally inverse semigroup S are interrelated. This interrelation

is captured by a pair of functors ΓS and ΔS . The functor ΓS : R(S) → L(S)∗ is

defined as follows. For each eS ∈ vR(S) and for each morphism λ(e, u, f) ∈ R(S), let
ηρe and ηρf be the natural isomorphisms associated with the H-functors H(ρe;−)

and H(ρf ;−), respectively; then as illustrated in the diagram below:

vΓS(eS) := H(ρe;−) and ΓS(λ(e, u, f)) := ηρeL(S)(ρ(f, u, e),−)η−1
ρf
. (2.7)

eS

λ(e,u,f)

��

H(ρe;−)

ΓS(λ(e,u,f))

��

ηρe
�� L(S)(Se,−)

L(S)(ρ(f,u,e),−)

��

Se

fS H(ρf ;−)
η
ρf

�� L(S)(Sf,−) Sf

ρ(f,u,e)

��

Similarly, we define ΔS : L(S) → R(S)∗ as follows: for each Se ∈ vL(S) and for

each morphism ρ(e, u, f) ∈ L(S),

vΔS(Se) := H(λe;−) and ΔS(ρ(e, u, f)) := ηλeR(S)(λ(f, u, e),−)η−1
λf . (2.8)

As in [23, Theorem IV.2], we can prove that ΓS and ΔS are well defined covariant

functors which are inclusion preserving and fully faithful. Moreover, for each eS ∈
vR(S), the restriction of ΓS to the full subcategory of R(S) whose objects are the

principal right ideals contained in eS is an isomorphism; a similar property holds

for ΔS and each Se ∈ vL(S).
The latter observation motivates the notion of a local isomorphism. An ideal (c)

of an unambiguous category C is the full subcategory of C with objects

v(c) := {d ∈ vC : d ⊆ c}.

Definition 2.7. A functor F between two unambiguous categories C and D is said

to be a local isomorphism if F is inclusion preserving, fully faithful and for each

c ∈ vC, F|(c) is an isomorphism of the ideal (c) onto (F (c)).

Thus, ΓS and ΔS are local isomorphisms. It must be noted here that the local

isomorphism ΓS as defined above are isomorphisms between (eS) and (ΓS(eS)) �
L(S)∗, for each eS ∈ vR(S); in general, the image ideal (ΓS(eS)) is a proper ideal

of the category L(S)∗.
To describe the relationship between the local isomorphisms ΓS and ΔS , we

need to employ the notion of the M -set MH(μ;−) of an H-functor H(μ;−) in an

unambiguous category C. It is defined as follows:

MH(μ;−) := {c ∈ vC : μ(c) is an isomorphism}. (2.9)
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So, the M -set MΓS(fS) is MH(ρf ;−) according to (2.7); similarly, MΔS(Se) =

MH(λe;−) by (2.8). Now, it can be seen that for objects Se ∈ vL(S) and fS ∈
vR(S),

Se ∈MΓS(fS) if and only if fS ∈MΔS(Se). (2.10)

The above statement leads us to the definition of a cross-connection.

Definition 2.8. Let C and D be unambiguous categories. A cross-connection

between C and D is a quadruplet (C,D; Γ,Δ), where Γ : D → C∗ and Δ : C → D∗

are local isomorphisms such that for c ∈ vC and d ∈ vD,

c ∈MΓ(d) ⇔ d ∈MΔ(c). (2.11)

Summarizing the above discussion, we have proved the following theorem.

Theorem 2.18. Let S be a locally inverse semigroup with unambiguous categories

L(S) and R(S). Define functors ΓS and ΔS as in (2.7) and (2.8). Then ΩS =

(L(S),R(S); ΓS ,ΔS) is a cross-connection between L(S) and R(S).

2.7. Locally inverse semigroup of a cross-connection

We have shown how a locally inverse semigroup gives rise to a cross-connection

of two unambiguous categories. Now, we describe the converse construction. We

build the locally inverse semigroup arising from a cross-connection between two

unambiguous categories. Recall from Sec. 2.5 that given an unambiguous category,

we have an associated locally inverse semigroup. We will be identifying the required

locally inverse semigroup associated with a cross-connection as a subdirect product

of the locally inverse semigroups arising from the two unambiguous categories, i.e.

as a semigroup of pairs of normal cones which ‘respect’ the cross-connection.

First, observe that given a cross-connection Ω = (C,D; Γ,Δ), by a well-known

category isomorphism [18]

[C, [D,Set]] ∼= [C × D,Set],
we obtain two bifunctors Γ(−,−) and Δ(−,−) from C × D to Set.

Now, for the cross-connection Ω = (C,D; Γ,Δ), the set

EΩ = {(c, d) ∈ vC × vD : c ∈MΓ(d)} (2.12)

is the regular biordered set associated with the cross-connection Ω [23]. We show

later that the set EΩ is in fact a pseudo-semilattice.

Recall that for each (c, d) ∈ EΩ, there is a uniquely defined idempotent cone

γ(c, d) in the unambiguous category C such that

cγ(c,d) = c and H(γ(c, d);−) = Γ(d). (2.13)

Similarly, for each pair (c, d) ∈ EΩ, we have a unique idempotent cone δ(c, d) in D
such that

cδ(c,d) = d and H(δ(c, d);−) = Δ(c). (2.14)
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Given a cross-connection Ω = (C,D; Γ,Δ), (c′, d), (c, d′) ∈ EΩ, f ∈ C(c′, c) and
g ∈ D(d′, d), the morphism g is called the transpose of f if the morphisms f and g

make the following diagram commute.

c′

f

��

Δ(c′)

Δ(f)

��

ηδ(c′ ,d)
�� D(d,−)

D(g,−)

��

d

c Δ(c)
ηδ(c,d′)

�� D(d′,−) d′

g

��

The transpose g ∈ D(d′, d) is unique for a given pair of elements in EΩ. The

transpose of f ∈ C(c′, c) will be denoted by f † in the sequel. Then we have the

following theorem which is a consequence of [23, Theorem IV.16], in the notation

introduced above.

Theorem 2.19. Given unambiguous categories C and D and a cross-connection

Ω = (C,D; Γ,Δ) with associated bifunctors Γ(−,−) and Δ(−,−) for each (c, d) ∈
vC × vD, the map χ(c, d) : Γ(c, d) → Δ(c, d) given by

χ(c, d) : γ(c′, d) ∗ f◦ 	→ δ(c, d′) ∗ (f †)◦

is a bijection, where c′ ∈ MΓ(d) and d′ ∈ MΔ(c) and f † ∈ D(d′, d) is the trans-

pose of the morphism f ∈ C(c′, c). Also the map (c, d) 	→ χ(c, d) defines a natural

isomorphism between the bifunctors Γ(−,−) and Δ(−,−).

Now, as in [23, Sec. IV.5.1], we obtain the following regular subsemigroups of

the semigroups Ĉ and D̂ from the bifunctors Γ(−,−) and Δ(−,−), respectively,

Γ̂ =
⋃

{Γ(c, d) : (c, d) ∈ vC × vD}, (2.15a)

Δ̂ =
⋃

{Δ(c, d) : (c, d) ∈ vC × vD}. (2.15b)

Since Γ̂ and Δ̂ are regular subsemigroups of the locally inverse semigroups Ĉ and

D̂, respectively, Γ̂ and Δ̂ are locally inverse semigroups.

Then we can see that a normal cone γ belongs to Γ̂ if and only if γ = γ(c1, d1) ∗ u,
where u is an isomorphism in C and (c1, d1) ∈ EΩ. Dually, a normal cone δ belongs

to Δ̂ if and only if δ = δ(c1, d1) ∗ u, where u is an isomorphism in D.

Now, we proceed to build the cross-connection semigroup associated with the

cross-connection as a subdirect product of the locally inverse semigroups Γ̂ and Δ̂.

Recall that χ as defined in Theorem 2.19 is a natural isomorphism between the

bifunctors Γ(−,−) and Δ(−,−). This natural isomorphism gives rise to a ‘linking’

between the locally inverse semigroups Γ̂ and Δ̂.

Definition 2.9. Given a cross-connection Ω = (Γ,Δ; C,D), a normal cone γ ∈ Γ̂

is said to be linked to δ ∈ Δ̂ if there is a (c, d) ∈ vC × vD such that γ ∈ Γ(c, d) and

δ = χ(c, d)(γ); we then say that the pair (γ, δ) is a linked pair.
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Given a cross-connection Ω = (Γ,Δ; C,D) of unambiguous categories C and D,

define the set

SΩ = {(γ, δ) ∈ Γ̂× Δ̂ : (γ, δ) is linked}. (2.16)

Define an operation on SΩ as follows:

(γ, δ) ◦ (γ′, δ′) = (γ · γ′, δ′ · δ) for all (γ, δ), (γ′, δ′) ∈ SΩ.

Suppose (γ, δ), (γ′, δ′) ∈ SΩ, then as in the [23, Lemma IV.30], we can show that

γ · γ′ is linked to δ′ · δ. Further by [23, Theorem IV.32], we see that SΩ is a regular

semigroup called the cross-connection semigroup determined by Ω. Then the set of

idempotents of the semigroup SΩ is given by

E(SΩ) = {(γ(c, d), δ(c, d)) : (c, d) ∈ EΩ}.
Since SΩ is a regular semigroup, the set E(SΩ) is a regular biordered set. By the

discussion in [23, Sec. V.1.2], we can see that the set E(SΩ) is regular biorder

isomorphic with the set EΩ under the map

(γ(c, d), δ(c, d)) 	→ (c, d).

More precisely, as in [23, Sec. V.1.2], we can show that the quasi orders in the set

E(SΩ) = EΩ are given by

(c, d) ≤� (c′, d′) ⇔ c ⊆ c′ and (c, d) ≤r (c′, d′) ⇔ d ⊆ d′

so that EΩ forms a regular biordered set with the basic products and sandwich sets

as described in [23, Sec. V.1.2].

Theorem 2.20. Given a cross-connection Ω = (Γ,Δ; C,D) of unambiguous cate-

gories C and D, the cross-connection semigroup SΩ is locally inverse.

Proof. Observe that the cross-connection semigroup SΩ is a subdirect product of

two locally inverse semigroups Γ̂ and Δ̂. It is well-known that a regular subdirect

product of two locally inverse semigroups is locally inverse. Hence, the theorem.

Corollary 2.21. Given a cross-connection Ω = (Γ,Δ; C,D) of unambiguous cate-

gories C and D, the biordered set EΩ is a pseudo-semilattice.

Further, by [23, Theorem IV.35], we have the following theorem.

Theorem 2.22. For a cross-connection Ω = (Γ,Δ; C,D) with the cross-connection

semigroup SΩ, the unambiguous categories L(SΩ) and R(SΩ) are isomorphic to the

categories C and D, respectively.
It is known that the category LIS of locally inverse semigroups forms a full

subcategory of the category RS of regular semigroups. Similarly, we can see that

the category CUC of cross-connections of unambiguous categories forms a full

subcategory of the category Cr of cross-connections of normal categories. Hence,
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by [23, Theorem V.18], we obtain the following structure theorem for locally inverse

semigroups.

Theorem 2.23. The category LIS of locally inverse semigroups is equivalent to

the category CUC of cross-connections of unambiguous categories.

3. The Inverse Case

In this section, we specialize the results of Sec. 2 to obtain a new structure theorem

for inverse semigroups. We will see that the full machinery of cross-connections is

not required for this task due to the intrinsic symmetry of inverse semigroups. It

also turns out that normal cones, our previous building blocks, are too general to

build inverse semigroups. We replace them with certain subspecies called inversive

cones. As the reader will see, employing these cones, we obtain the structure the-

orem for inverse semigroups using a single category. We characterize this category

as an inversive category and prove a category equivalence between the category

IS of inverse semigroups and the category IC of inversive categories; as a parallel

to the Ehresmann–Schein–Nambooripad Theorem (which describes a category iso-

morphism between inverse semigroups and inductive groupoids). Further, we will

also outline how an inductive groupoid is ‘sitting inside’ a given inversive category;

thereby describing the equivalence of these approaches. Thus, we are able to partly

recover the Ehresmann–Schein–Nambooripad Theorem from our considerations of

locally inverse semigroups.

3.1. Inverse semigroups and inversive categories

We begin by analyzing the category L(S), where S is an inverse semigroup. Our

discussion will develop as follows: registering certain propertiesa of L(S) is inter-

woven with introducing appropriate abstract notions that capture these properties.

Eventually, we arrive at a collection of notions that provides a complete abstract

characterization for categories of the form L(S) with S being an inverse semigroup.

As in Sec. 2, we observe that the category L(S) is a category with subobjects.

Since S is inverse, the set E(S) forms a semilattice. So, the set vL(S) along with

the partial order ≤ defined by

Se ≤ Sf ⇔ Se ⊆ Sf

also forms a semilattice. Abstracting this, we have the following definition.

Definition 3.1. A category with subobjects (C,P) is called a semilattice ordered

category (abbreviated as so-category in the sequel) if vP forms a semilattice with

aSome of them had been discussed in [29], but we reprove these properties here in our notation
for the sake of completeness and uniformity.
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respect to the relation ≤ defined as

p ≤ q ⇔ there is an inclusion from p to q

for any p, q ∈ vP .

Given any two objects c, c′ in an so-category C, there exists a unique object d

in C such that (1) there are inclusions from d to c and c′, (2) for every object d′

such that there are inclusions from d′ to c and c′, there is an inclusion from d′ to d.
Hence, this ‘maximal’ object d acts as the meet of the objects c and c′. We denote

the unique object d in vC by c ∧ c′.
When S is an inverse semigroup, we can easily see that any inclusion in L(S) will

be of the form ρ(e, e, f) and any retraction will be of the form ρ(f, e, e), where e, f ∈
E(S) with e ≤ f . Any isomorphism in L(S) will be of the form ρ(aa−1, a, a−1a)

for some a ∈ S; equivalently of the form ρ(e, u, f) for some e, f ∈ E(S) and some

u ∈ S such that e R u L f . For an arbitrary morphism ρ(e, u, f) ∈ L(S), we can

easily see that its unique normal factorization is given by

ρ(e, u, f) = ρ(e, g, g)ρ(g, u, h)ρ(h, h, f),

where g = uu−1 and h = u−1u. Also, for an inclusion ρ(e, e, f), its unique retraction

is given by ρ(f, e, e).

Observe that in an so-category C where every inclusion splits uniquely, we have

two morphisms uniquely associated with any pair c, c′ ∈ vC such that c ≤ c′, namely,

the inclusion ι(c, c′) and its retraction q(c′, c). The subcategory generated by the

retractions and inclusions in C is called the core of C and denoted by 〈C〉.
When S is an inverse semigroup, any morphism ρ in the core category 〈L(S)〉 can

be written as ρ = ρ(e1, e1, e2)ρ(e2, e3, e3) · · · ρ(e2n−1, e2n−1, e2n)ρ(e2n, e2n, e2n+1)

where each ‘odd’ factor ρ(e2i−1, e2i−1, e2i) is an inclusion and each ‘even’ factor

ρ(e2i, e2i, e2i+1) is a retraction. (To ensure that the factorization of ρ starts with

an inclusion and ends with a retraction, we can, if necessary, prepend or append

a morphism of the form 1e = ρ(e, e, e) which serves both as an inclusion and a

retraction). Then ρ = ρ(e1, e1e3 · · · e2n+1, e2n+1). Since E(S) is a semilattice, we

see that the element e1e3 · · · e2n+1 is an idempotent, say f , and so the unique normal

factorization of ρ will be given by

ρ = ρ(e1, f, f)ρ(f, f, e2n+1),

where ρ(e1, f, f) is a retraction and ρ(f, f, e2n+1) is an inclusion. This leads to the

following definition of a special kind of normal factorization.

Definition 3.2. Let C be an so-category in which inclusions split uniquely. A

morphism ϕ = ι(c1, c2)q(c2, c3) · · · ι(c2n−1, c2n)q(c2n, c2n+1) in the core 〈C〉 is said

to have an inversive factorization if ϕ = q(c1, d)ι(d, c2n+1), where q(c1, d) is the

retraction from c1 to d :=
∧n
i=0 c2i+1 and ι(d, c2n+1) is the inclusion from d to

c2n+1.
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Remark 3.1. Let C be an so-category with inclusions splitting uniquely where

every morphism in the core 〈C〉 has an inversive factorization. Then if ϕ : c → d is

an isomorphism in 〈C〉, then c = d and ϕ = 1c, that is, the only isomorphisms in

〈C〉 are the identity morphisms.

As mentioned earlier, normal cones prove to be too general for the inverse case.

So, we proceed to analyze the principal cone ρa in an inverse semigroup S to

characterize our apex building blocks. Recall from Eq. (2.1) that the principal cone

ρa : vL(S) → L(S) with apex cγ = Sa = Sf is defined for each Se ∈ vL(S)
as ρa(Se) = ρ(e, ea, f), where f ∈ E(La). Since S is inverse, there is a unique

idempotent in the L -class of the element a so that f = a−1a. Now, recall from [23,

Lemma III.15] that the set

mρa := {Se : ρa(Se) is an isomorphism} = {Se : e ∈ E(Ra)} = {Saa−1}.

That is, for a principal cone ρa in the category L(S), where S is an inverse semi-

group, there is a unique isomorphism component and so the M -set mρa is a single-

ton. In what follows, we use the same notation for this singleton set and its unique

element.

Let ρa be a principal cone in the category L(S) and let Sf := Sa−1a be its apex

and Sg := Saa−1 its M -set. Then for an arbitrary object Se ∈ vL(S), we have

ρa(Se) = ρ(e, ea, f)

= ρ(e, eg, eg)ρ(eg, ea, h)ρ(h, h, f) using normal factorization

and h = a−1ea

= ρ(e, eg, eg)ρ(eg, ea, f) since eah = ea(a−1ea) = egea = ega

= q(Se, Seg)ρa(Seg)

= q(Se, Seg)ι(Seg, Sg)ρa(Sg) since ρa is a cone and Seg ⊆ Sg.

That is, the component of the principal cone ρa at any object Se is composed of:

(i) the retraction from Se to the object Seg = Se ∧mρa ,

(ii) the inclusion from Se ∧mρa to the object mρa ,

(iii) the component of the principal cone at mρa .

Hence, coim ρa(Se) = Se∧mρa . The above discussion inspires us to isolate certain

special normal cones in an so-category, which we call inversive cones.

Definition 3.3. A cone γ in an unambiguous so-category C is said to be an inver-

sive cone if:

(1) the M -set mγ is a singleton,

(2) for each c ∈ vC, coimγ(c) = c ∧mγ .
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Lemma 3.2. Let C be an unambiguous so-category. Then for any inversive cone γ

and any c ∈ vC,
γ(c) = q(c, c ∧mγ)γ(c ∧mγ).

Proof. For any c ∈ vC, since coim γ(c) = c ∧mγ , the unique normal factorization

of the morphism γ(c) has the form γ(c) = q(c, c ∧mγ)uj for some isomorphism u

and inclusion j. Then by the definition of a cone (Definition 2.3), we have

γ(c ∧mγ) = ι(c ∧mγ , c)γ(c) = ι(c ∧mγ , c)q(c, c ∧mγ)uj = uj,

since ι(c ∧ mγ , c)q(c, c ∧ mγ) = 1c∧mγ by the definition of a retraction. Hence,

γ(c) = q(c, c ∧mγ)γ(c ∧mγ) for any c ∈ vC.

Remark 3.3. Observe that an inversive cone γ in an unambiguous so-category C
gets completely determined by the component of γ at the object mγ ∈ vC. Indeed,
for any c ∈ vC, we have γ(c) = q(c, c ∧ mγ)γ(c ∧ mγ) by Lemma 3.2. But since

c∧mγ ≤ mγ , we have γ(c∧mγ) = ι(c∧mγ ,mγ)γ(mγ) by the definition of a cone.

Hence, γ(c) = q(c, c ∧mγ)ι(c ∧mγ ,mγ)γ(mγ). This leads to the following lemma.

Lemma 3.4. If S is an inverse semigroup, for every Sf ∈ L(S), there exists a

unique idempotent inversive cone with apex Sf, namely, ρf .

Proof. Clearly, the cone ρf is an idempotent inversive cone with apex Sf . Let μ

be an arbitrary idempotent inversive cone with apex Sf . Since μ is an idempotent

cone, by Lemma 2.9, we have μ(Sf) = 1Sf . But since μ is an inversive cone, the

M -set mμ is a singleton and this implies that mμ = {Sf}. Also, for an arbitrary

Se ∈ vL(S), we have coimμ(Se) = Se ∧mμ. So,

μ(Se) = q(Se, Se ∧mμ)μ(Se ∧mμ)

= q(Se, Se ∧mμ)ι(Se ∧mμ,mμ)μ(mμ) since Se ∧mμ ≤ mμ

= ρ(e, ef, ef)ρ(ef, ef, f)ρ(f, f, f) since mμ = {Sf}
= ρ(e, ef, f)

= ρf(Se).

So μ = ρf and hence the lemma.

Now, we collect all properties of the category of the principal left ideals of an

inverse semigroup registered so far into a suitable categorical abstraction.

Definition 3.4. A category C is said to be an inversive category if:

(IC 1) C is an so-category;

(IC 2) every inclusion in C splits uniquely;

(IC 3) every morphism in C admits a unique normal factorization;
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(IC 4) every morphism in the core 〈C〉 has an inversive factorization;

(IC 5) for each c ∈ vC, there is a unique inversive idempotent cone with apex c.

Observe that an inversive category is indeed unambiguous. In the sequel, given

an object c in an inversive category C, the unique inversive idempotent cone with

apex c is denoted by μc.

An inclusion preserving functor F between two inversive categories C1 and C2 is

called an inversive functor if for any two objects c, c′ ∈ vC1,
vF (c ∧ c′) = vF (c) ∧ vF (c′).

It is easy to see that inversive categories with inversive functors as morphisms form

a locally small category IC.

We have already seen that given an inverse semigroup S, the category L(S) is
inversive. Further, given a homomorphism φ between two inverse semigroups S1

and S2, we can define a functor Φ : L(S1) → L(S2) as follows. For idempotents

e, f ∈ S1 and u ∈ eS1f ,

vΦ : S1e 	→ S2eφ; Φ : ρ(e, u, f) 	→ ρ(eφ, uφ, fφ). (3.1)

It is easy to verify that Φ is an inversive functor. We have the following proposition.

Proposition 3.5. The assignment

S 	→ L(S); φ 	→ Φ

constitutes a functor, say C, from the category IS of inverse semigroups to the

category IC of inversive categories.

3.2. Inverse semigroup from an inversive category

Having functorially associated an inversive category with a given inverse semigroup

in the previous section, we proceed to show that every inversive category arises as

the category L(S) of a suitable inverse semigroup S. Naturally, we search for our

required inverse semigroup in the set of all inversive cones arising from an inversive

category. First, we need to prove some preliminary lemmas.

Lemma 3.6. If an so-category C is unambiguous, then a cone γ in C is inversive

if and only if it can be represented as γ = μ ∗ u, where μ is an idempotent inversive

cone and u is an isomorphism in C.

Proof. Let γ be an inversive cone. Then γ(mγ) is an isomorphism. Let u = γ(mγ)

and μ = γ ∗ u−1. By definition γ = γ ∗ (u−1u) = (γ ∗ u−1) ∗ u = μ ∗ u. Also since

cμ = mγ , we have μ(cμ) = γ ∗ u−1(mγ) = γ(mγ)u
−1 = uu−1 = 1cμ . Hence, μ is an

idempotent cone.

Now it remains to show that μ is inversive. Suppose μ does not satisfy condition

(1) of Definition 3.3. Then there exists an object d ∈ vC such that d �= mγ and

μ(d) is an isomorphism. Then μ(d) = γ(d)u−1 is an isomorphism. That is γ(d) is
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an isomorphism and d �= mγ . This is a contradiction to the fact that γ is inversive

and hence, μ satisfies Definition 3.3(1).

Also, for an arbitrary c ∈ vC, observe that

μ(c) = γ(c)u−1

= q(c, c ∧mγ)ι(c ∧mγ ,mγ)γ(mγ)(γ(mγ))
−1 by Remark 3.3

= q(c, c ∧mγ)ι(c ∧mγ ,mγ).

Hence, using the unique normal factorization property, we have coimμ(c) = c ∧
mγ = c ∧ cμ = c ∧mμ. Thus, μ is an inversive cone.

Conversely, suppose γ = μ ∗ u, where μ is an idempotent inversive cone and u

is an isomorphism in C. Then arguing similarly as above, we can see γ is a cone

satisfying Definition 3.3(1) with mγ = cμ = mμ and γ(mγ) = u. Also, for an

arbitrary c ∈ vC, observe that

γ(c) = μ(c)u

= q(c, c ∧mμ)ι(c ∧mμ,mμ)u by Remark 3.3

= q(c, c ∧mγ)ι(c ∧mγ ,mγ)γ(mμ) since mγ = mμ.

Since ι(c ∧ mγ ,mγ)γ(mμ) is a monomorphism, using Proposition 2.4, we have

coim γ(c) = c ∧mγ . Hence, γ is an inversive cone.

Remark 3.7. In an inversive category, since there is a unique associated inversive

idempotent cone μc for each object c, the above lemma can be strengthened as

follows: a cone γ is inversive if and only if γ can be uniquely represented as γ =

μmγ ∗ γ(mγ).

Lemma 3.8. Let C be an inversive category. Given an idempotent inversive cone

μ and a retraction e : cμ → d, the cone ν = μ ∗ e is an idempotent inversive cone

with apex d.

Proof. Since μ is an idempotent inversive cone, μ(c) = q(c, c ∧ cμ)ι(c ∧ cμ, cμ)

because μ(cμ) = 1cμ (see Remark 3.3). Then

ν(d) = μ ∗ e(d) = μ(d)e

= q(d, d ∧ cμ)ι(d ∧ cμ, cμ)q(cμ, d) since e = q(cμ, d)

= q(d, d)ι(d, cμ)q(cμ, d) since d ∧ cμ = d

= 1d since ι(d, cμ)q(cμ, d) = 1d.

Hence, ν is an idempotent cone with apex d. Now if there exists d′ ∈ mν , then ν(d
′)

is an isomorphism. Then

ν(d′) = μ(d′)q = q(d′, d′ ∧ cμ)ι(d′ ∧ cμ, cμ)q(cμ, d).
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Now since C is inversive and ν(d′) ∈ 〈C〉, by (IC 4) and Remark 3.1, we have d′ = d

and ν(d′) = 1d. Hence, ν satisfies Definition 3.3(1).

Also, ν(c) = q(c, c∧cμ)ι(c∧cμ, cμ)q(cμ, cν) and so ν(c) ∈ 〈C〉. By (IC 4), the mor-

phism ν(c) has a unique inversive factorization. Since c∧ cμ ∧ cν = c∧ (cμ ∧ cν) =
c∧ cν , we have

ν(c) = q(c, c ∧ cν)ι(c ∧ cν , cν).
Hence, coim ν(c) = c ∧ cν = c ∧mν and the cone ν satisfies Definition 3.3(2).

Now, given an inversive category C, we build an inverse semigroup from its

inversive cones. Let γ, δ be inversive cones in C. As in (2.5), we define

γ · δ := γ ∗ (δ(cγ))◦,
where (δ(cγ))

◦ is the epimorphic component of the morphism δ(cγ). Then clearly

γ · δ is a cone. We need to verify that it is an inversive cone.

Proposition 3.9. Let C be an inversive category. Then γ · δ as defined above is an

inversive cone.

Proof. By Lemma 3.6, it suffices to show that γ · δ can be represented as μ ∗ u,
where μ is an idempotent inversive cone and u is an isomorphism in C. Since γ is

an inversive cone, ν := γ ∗ (γ(mγ))
−1 is an idempotent cone with apex mγ (as in

the proof of Lemma 3.8). Now observe that

γ · δ = γ ∗ (δ(cγ))◦ = γ ∗ (γ(mγ))
−1γ(mγ)(δ(cγ))

◦ = ν ∗ γ(mγ)(δ(cγ))
◦.

Then since γ(mγ) is an isomorphism and (δ(cγ))
◦ is an epimorphism, the morphism

γ(mγ)(δ(cγ))
◦ is an epimorphism and using Proposition 2.4, it has a unique normal

factorization of the form qu, where q is a retraction and u is an isomorphism. Let

μ = ν ∗ q. Then
γ · δ = ν ∗ qu = (ν ∗ q) ∗ u = μ ∗ u.

By Lemma 3.8, the idempotent cone μ is inversive and so by Lemma 3.6, we see

that γ · δ is an inversive cone.

Thus, given an inversive category C, the set C̃ of all its inversive cones forms a

subsemigroup of the regular semigroup Ĉ of all its normal cones.

Proposition 3.10. The subsemigroup C̃ is inverse.

Proof. Given an inversive cone γ ∈ C̃ with apex d, Lemma 2.10(1) implies that

every idempotent cone μ such that μ L γ in Ĉ satisfies cμ = d. By (IC 5), there

exists a unique idempotent inversive cone with this property. Hence, every L -class

in C̃ contains a unique idempotent.

Now, we proceed to show that the R-class of an inversive cone γ in C̃ contains

a unique idempotent. Clearly, γ ∗ (γ(mγ))
−1 is an idempotent in the R-class of the
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cone γ (see Remark 3.7). Now, we argue by contradiction. Suppose, there exist two

distinct idempotent cones, namely ν and μ in the R-class of an inversive cone γ.

Observe that since an H -class can contain at most one idempotent, the idempotents

ν and μ are not L -related and hence by Lemma 2.10(1), cν �= cμ. Then using

Lemma 2.10(2), we can see that γ(cν) and γ(cμ) are both isomorphisms. Hence,

the M -set of the inversive cone γ contains two distinct objects cν and cμ. This is a

contradiction and hence the R-class of an inversive cone γ in C̃ contains a unique

idempotent.

By Theorem 2.1, the semigroup C̃ is inverse.

The following are immediate specializations of Theorem 2.13 and Corollary 2.14.

Theorem 3.11. Let C be an inversive category and C̃ the inverse semigroup of

its inversive cones. Define a functor Ψ between the categories C and L(C̃) as

follows:

vΨ(c) := C̃μ for c ∈ vC,

Ψ(f) := ρ(μ, μ ∗ f◦, ν) for f ∈ C(c, d),

where μ, ν ∈ E(C̃) are such that cμ = c and cν = d. Then Ψ is an isomorphism of

inversive categories.

Corollary 3.12. A category is inversive if and only if it is isomorphic to the

category L(S) for some inverse semigroup S.

Remark 3.13. Observe that we can prove the exact dual results for the category

R(S) of principal right ideals of an inverse semigroup S.

Thus, given an inversive category C, we have an associated inverse semigroup

C̃. Now, we proceed to show that this association is also functorial. To this end, we

begin with the following lemma which easily follows from Lemma 3.6.

Lemma 3.14. Suppose Φ is an inversive functor between two inversive categories

C1 and C2, if γ = μmγ ∗ u is an inversive cone in C1, then

Φ(γ) := μvΦ(mγ ) ∗ Φ(u)

is an inversive cone in the inversive category C2.

Lemma 3.15. If Φ is an inversive functor between two inversive categories C1 and

C2, then the mapping φ : C̃1 → C̃2 defined as

φ : γ 	→ Φ(γ)

is a semigroup homomorphism.
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Proof. By Remark 3.7 and Lemma 3.14, the mapping φ is well defined. Also, for

γ1, γ2 ∈ C̃1,
(γ1 · γ2)φ = Φ(γ1 · γ2)

= Φ(γ1 ∗ (γ2(cγ1))◦) using (2.5)

= Φ(μmγ1
∗ u1(μmγ2

∗ u2(cγ1))◦) writing γ1 = μmγ1
∗ u1 and

γ2 = μmγ2
∗ u2 for

some isomorphisms u1, u2

= Φ(μmγ1
∗ u1(μmγ2

(cγ1)u2)
◦) using (2.4)

= Φ(μmγ1
∗ u1qu) where qu is the normal factorization of

(μmγ2
(cγ1)u2)

◦

= Φ(μmγ1
∗ q′u′) where q′u′ is the normal factorization of

the epimorphism u1qu

= Φ(μc′ ∗ u′) letting μc′ := μmγ1
∗ q′

= μvΦ(c′) ∗ Φ(u′) by definition of Φ

= μvΦ(mγ1 )
∗ q(vΦ(mγ1), vΦ(c

′))Φ(u′) using Lemma 3.8

= μvΦ(mγ1 )
∗ Φ(q′)Φ(u′) using (IC 2) in C2

= μvΦ(mγ1 )
∗ Φ(u1)Φ(q)Φ(u) since inversive functors

preserve normal factorizations

= μvΦ(mγ1 )
∗ Φ(u1)Φ((μmγ2

(cγ1)u2)
◦) —"—

= μvΦ(mγ1 )
∗ Φ(u1)(Φ(μmγ2

(cγ1))Φ(u2))
◦ —"—

= μvΦ(mγ1 )
∗ Φ(u1)(μvΦ(mγ2 )

(vΦ(cγ1))Φ(u2))
◦ using Lemma 3.14

= μvΦ(mγ1 )
∗ Φ(u1)(μvΦ(mγ2 )

∗ Φ(u2)(vΦ(cγ1)))◦ using (2.4)

= (μvΦ(mγ1 )
∗ Φ(u1)) · (μvΦ(mγ2 )

∗ Φ(u2)) using (2.5)

= Φ(γ1) · Φ(γ2) using Lemma 3.14

= γ1φ · γ2φ.

Thus, we have the following proposition which can be easily verified.

Proposition 3.16. Given an inversive category C and an inversive functor Φ

between two inversive categories C1 and C2, the following assignment:

C 	→ C̃; Φ 	→ φ
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constitutes a functor, say S, from the category IC of inversive categories to the

category IS of inverse semigroups.

3.3. A new structure theorem for inverse semigroups

Having characterized the principal left (right) ideals of an inverse semigroup S as an

inversive category, we now proceed to establish a new structure theorem for inverse

semigroups. First, recall the following folklore property of inverse semigroups.

Proposition 3.17. Let S be an inverse semigroup. For every pair p, q of distinct

elements in S there exists an idempotent e ∈ S such that pe �= qe (respectively,

ep �= eq). In particular, S is right reductive.

Proof. Suppose S is inverse and p, q ∈ S are such that pe = qe for every idempotent

e ∈ S. Taking the idempotent p−1p for e, we conclude that p = pp−1p = qp−1p and

similarly, q = pq−1q. So

p = qp−1p = pq−1qp−1p = pp−1pq−1q = pq−1q = q.

Hence, the proposition.

Theorem 3.18. If S is an inverse semigroup, the map ρ̃ : S → L̃(S) given by

a 	→ ρa is a semigroup isomorphism.

Proof. Using the language of Proposition 2.15, Proposition 3.17 implies that when

S is an inverse semigroup, the right regular representation ρ : S → Sρ is injective.

Hence, by Proposition 2.15, the map ρ̃ : S → L̃(S) given by a 	→ ρa is an injective

homomorphism. Also, if γ ∈ L̃(S) is any inversive cone, then by Lemma 3.6, γ =

μ ∗u for some idempotent inversive cone μ and an isomorphism u in L(S). Clearly,
by Lemma 3.4, the only idempotent inversive cones in L(S) are those of the form

ρe for some e ∈ E(S). Also, since any isomorphism in L(S) is of the form ρ(e, u, f)

for e R u L f , we see that

γ = μ ∗ u = ρe ∗ ρ(e, u, f) = ρeu = ρu.

So ρ̃ is surjective and hence the theorem.

Now, by Proposition 3.5, we have a functor C from the category IS of inverse

semigroups to the category IC of inversive categories and by Proposition 3.16, we

have a functor S from the category IC of inversive categories to the category IS of

inverse semigroups. We proceed to prove that the functors C and S constitute an

adjunction between the categories IS and IC, leading to a category equivalence.

Observe that for a given inverse semigroup S,

CS(S) = S(L(S)) = L̃(S).

So if we define the map ψ(S) : S → CS(S) as a 	→ ρa, then by Theorem 3.18, we see

that ψ(S) is a semigroup isomorphism. So, any element of CS(S) can be denoted
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by ρu for some u ∈ S. Also for e R u L f , we see that

ρu = ρeu = ρe ∗ ρ(e, u, f).
Further, given a homomorphism φ between two inverse semigroups S1 and S2, using

Proposition 3.5, we see that C(φ) = Φ as defined in (3.1). So, we have a functor

C(φ) : L(S1) → L(S2). Thus, S(C(φ)) is the semigroup homomorphism as defined in

Lemma 3.15 between the semigroups L̃(S1) and L̃(S2) induced by the functor C(φ).

Hence, for an element ρu = ρe ∗ ρ(e, u, f) = μS1e ∗ ρ(e, u, f) ∈ L̃(S1) = CS(S1),

(ρu)CS(φ) = (μS1e ∗ ρ(e, u, f))CS(φ)
= μvC(φ)(S1e) ∗ C(φ)(ρ(e, u, f))
= μvΦ(S1e) ∗ Φ(ρ(e, u, f))
= μS2eφ ∗ ρ(eφ, uφ, fφ)
= ρeφ ∗ ρ(eφ, uφ, fφ)
= ρeφuφ = ρeuφ = ρuφ.

Proposition 3.19. Given an inverse semigroup S, the map ψ : S 	→ ψ(S) is a

natural isomorphism from the identity functor 1IS to the functor CS.

Proof. Since ψ(S) is a semigroup isomorphism, it suffices to show that ψ is a

natural transformation. That is, for a homomorphism φ : S1 → S2, we need to

show that the following diagram commutes.

S1

φ

��

ψ(S1)
�� CS(S1)

CS(φ)

��

S2
ψ(S2)

�� CS(S2)

For a ∈ S1, we have

aφψ(S2) = ρaφ.

Also, from the discussion above, we have

aψ(S1)CS(φ) = (ρa)CS(φ) = ρaφ.

So, the above diagram commutes and hence ψ is a natural isomorphism.

Finally, we need to show that the identity functor 1IC is naturally isomorphic

to the functor SC. Observe that for a given inversive category C,
SC(C) = C(C̃) = L(C̃).

So if we define a functor Ψ(C) : C → L(C̃) as in Theorem 3.11, recall that Ψ(C) is
an isomorphism of inversive categories. Given an inversive functor Φ between two
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inversive categories C1 and C2, then S(Φ) as defined in Lemma 3.15 is a semigroup

homomorphism from C̃1 to C̃2. Observe that an arbitrary object of the category

SC(C1) = L(C̃1) may be denoted by C̃1ϑ, where ϑ is an idempotent inversive cone

in L(C̃1). Hence, the functor SC(Φ) will map an object C̃1ϑ 	→ C̃2Φ(ϑ), where Φ(ϑ)

is defined as in Lemma 3.14.

If ρ(ϑ, ξ, υ) is an arbitrary morphism of the category L(C̃1), where ϑ, υ are

idempotent inversive cones in L(C̃1) and ξ ∈ ϑC̃1υ, the functor SC(Φ) map is as

follows:

ρ(ϑ, ξ, υ) 	→ ρ(Φ(ϑ),Φ(ξ),Φ(υ)),

where Φ(ϑ) etc. are defined as in Lemma 3.14.

Proposition 3.20. Given an inversive category C, the map Ψ : C 	→ Ψ(C) is a

natural isomorphism from the identity functor 1IC to the functor SC.

Proof. Since Ψ(C) is an isomorphism, it suffices to show that Ψ is a natural trans-

formation. That is, for a functor Φ : C1 → C2, we need to show that the following

diagram commutes.

C1

Φ

��

Ψ(C1)
�� SC(C1)

SC(Φ)

��

C2
Ψ(C2)

�� SC(C2)

For an object c ∈ vC1, we have

ΦΨ(C2)(c) = Ψ(C2)(Φ(c))
= C̃2μ (where μ is an idempotent inversive cone such that cμ = Φ(c)).

Also, from the discussion above, we have

Ψ(C1)SC(Φ)(c) = SC(Φ)(C̃1ϑ) (where cϑ = c)

= C̃2Φ(ϑ) (where Φ(ϑ) is an inversive cone as in Lemma 3.14).

By the definition of Φ(ϑ) as in Lemma 3.14, it is clear that if ϑ is an idempotent

inversive cone in C1 with apex c, then Φ(ϑ) is an idempotent inversive cone C2 with

apex Φ(c). Moreover, since there is a unique idempotent inversive cone with a given

vertex, we conclude that μ = Φ(ϑ). Hence,

ΦΨ(C2)(c) = Ψ(C1)SC(Φ)(c)
and so the diagram commutes for every object c ∈ vC1.
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Further for a morphism f : c→ d in the category C1, we have

ΦΨ(C2)(f) = Ψ(C2)(Φ(f)) = ρ(μ, μ ∗ (Φ(f))◦, ν),
where μ and ν are idempotent inversive cones such that cμ = Φ(c) and cν = Φ(d).

Also,

Ψ(C1)SC(Φ)(f) = SC(Φ)(ρ(ϑ, ϑ ∗ f◦, υ)) where ϑ, υ are idempotent inversive

cones in L(C̃1) such that cϑ=c and cυ=d

= ρ(Φ(ϑ),Φ(ϑ ∗ f◦),Φ(υ)) where Φ(ϑ) etc. are as in

Lemma 3.14.

As argued in the case of objects, we can easily see that μ = Φ(ϑ) and ν = Φ(υ).

Further, since Φ is an inversive functor, as argued in the proof of Lemma 3.15, we

can verify that μ ∗ (Φ(f))◦ = Φ(ϑ ∗ f◦). That is, for a morphism f : c → d in the

category C1,
ΦΨ(C2)(f) = Ψ(C1)SC(Φ)(f)

and the diagram commutes for every morphism f in C1. So, the diagram is commu-

tative and hence Ψ is a natural isomorphism.

Combining Propositions 3.19 and 3.20, we arrive at the main result of this

section.

Theorem 3.21. The category IS of inverse semigroups is equivalent to the category

IC of inversive categories.

3.4. Inductive groupoids and inversive categories

Any element x in an inverse semigroup S can be seen as a morphism from the

idempotent e := xx−1 to the idempotent f := x−1x.

e

f
1e

1fx

x−1

In this manner, one can naturally associate a groupoid G(S) with a given inverse

semigroup S such that the set vG(S) of objects coincides with the set of idempotents

of the semigroup S. Abstracting the characteristic properties of the groupoid G(S)
leads to the following definition.
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Definition 3.5. Let G be a groupoid and denote by d : G → vG and r : G → vG
its domain and codomain maps, respectively. Let ≤ be a partial order on G. Then
(G,≤) is called an inductive groupoid if (vG,≤) is a semilattice and for all e, f ∈ vG
and all x, y, u, v ∈ G, the following hold:

(IG 1) If u ≤ x, v ≤ y and r(u) = d(v), r(x) = d(y), then uv ≤ xy.

(IG 2) If x ≤ y, then x−1 ≤ y−1.

(IG 3) If 1e ≤ 1d(x), then there exists a unique morphism e�x ∈ G (called the

restriction of x to e) such that e�x ≤ x and d(e�x) = e.

(IG 3∗) If 1f ≤ 1r(x), then there exists a unique morphism x�f ∈ G (called the

corestriction of x to f) such that x�f ≤ x and r(x�f) = f .

The inductive groupoids with inductive functors as morphisms form the locally

small category IG of inductive groupoids, see [17, Chap. 4] for details. The above

discussed association between semigroups and groupoids can be extended to a cat-

egory isomorphism (not just a category equivalence) as follows.

Theorem 3.22 (Ehresmann–Schein–Nambooripad Theorem, see [17, The-

orem 4.1.8]). The category IG of inductive groupoids is isomorphic to the category

IS of inverse semigroups.

Using Theorems 3.22 and 3.21, by transitivity, we see that the category IG of

inductive groupoids is equivalent to the category IC of inversive categories. Now,

we proceed to describe a direct category equivalence between the categories IG

and IC, without any semigroup assumptions. This may be seen as a very much

simplified version of the results in [9, 10].

First, given an inversive category C with the semilattice order ≤, we proceed to

identify the inductive groupoid associated with C. To this end, let GC be the subcat-

egory of the category C consisting of all isomorphisms in C. Clearly, GC is a groupoid.

Given any two morphisms ϕ and ψ in GC with domains c and d, respectively, define

a relation ≤C as follows:

ϕ ≤C ψ ⇔ c ≤ d and ϕ = (ι(c, d)ψ)◦,

where ι(c, d) is the inclusion from c to d and (ι(c, d)ψ)◦ is the epimorphic component

of the monomorphism ι(c, d)ψ in the inversive category C. It can be easily seen that

≤C is a partial order on GC .
Since the order ≤C reduces to the semilattice order ≤ on the identities of GC ,

we observe that (vGC ,≤C) forms a semilattice. Further, given a morphism ψ in GC
with domain d and if 1c ≤C 1d, then by letting

c�ψ := (ι(c, d)ψ)◦

as the restriction of the morphism ψ in the groupoid GC to the object c, we can

easily verify the following.

Proposition 3.23. (GC ,≤C) is an inductive groupoid.
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Also, given an inversive functor between two inversive categories, its restriction

will give an inductive functor between the two corresponding inductive groupoids.

Thus, the above correspondence is functorial between the categories IC and IG.

Conversely, given an inductive groupoid (G,≤), we proceed to ‘build’ the inver-

sive category CG associated with it. To this end, we will follow the scheme used

in [10, Sec. 4]. We consider three intermediary categories: PG , G and QG respon-

sible for inclusions, isomorphisms and retractions, respectively. Then we introduce

a special partial binary operation to build the required category CG from these

categories. A somewhat similar construction can be seen in [28, Theorem 3.4].

Given an inductive groupoid (G,≤), the categories PG and QG are such that

vPG = vQG := vG.
Also, for e, f ∈ vG such that e ≤ f , a morphism in PG is defined as the unique

morphism ι(e, f) from e to f and a morphism in QG is defined as the unique

morphism q(f, e) from f to e. The categoryPG is a strict preorder and its morphisms

are called inclusions.

In the case of general normal categories in [9, 10], a further auxiliary category

was needed. Here, we do not need it since inversive categories have unique factor-

izations and this allows us to use G itself as a building block. So, the set of objects

of the required category is vCG := vG and morphisms in CG are defined by

CG := {(q, α, j) ∈ QG × G × PG : r(q) = d(α) and r(α) = d(j)}.
As in [10, Sec. 4], we denote an arbitrarymorphism (q, α, j) in CG by just [e, α, f〉,

where e = d(q) and f = r(j). Given two such morphisms [e, α, f〉, [f, β, g〉 ∈ CG , we
compose them as follows. For h = r(α) ∧ d(β),

[e, α, f〉[f, β, g〉 = [e, α�h · h�β, g〉. (3.2)

Then CG forms a category such that PG is a strict preorder subcategory by

identifying any morphism j ∈ PG with [d(j), 1d(j), r(j)〉 ∈ CG . Similarly, QG is a

subcategory of CG by identifying any morphism q ∈ QG with [d(q), 1r(q), r(q)〉 ∈ CG .
It is easy to verify that (CG ,PG) satisfies (IC 1)–(IC 3).

Let f = ι(e1, e2)q(e2, e3) · · · ι(e2n−1, e2n)q(e2n, e2n+1) be an arbitrary morphism

in the core 〈CG〉 so that

f = [e1, 1e1 , e2〉[e2, 1e3 , e3〉[e3, 1e3 , e4〉 · · · [e2n−1, 1e2n−1 , e2n−1〉[e2n, 1e2n+1 , e2n+1〉
= [e1, 1e1∧e3 , e3〉[e3, 1e3 , e4〉 · · · [e2n−1, 1e2n−1 , e2n−1〉[e2n, 1e2n+1 , e2n+1〉
= [e1, 1e1∧e3 , e4〉 · · · [e2n−1, 1e2n−1 , e2n−1〉[e2n, 1e2n+1, e2n+1〉

= [e1, 1e, e2n+1〉 where e =

n∧
i=0

e2i+1

= [e1, 1e, e〉[e, 1e, e2n+1〉.
Hence, any morphism in 〈CG〉 admits an inversive factorization and so (IC 4) is

satisfied.
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Finally, given α ∈ G, if we define a map rα : vCG → CG as

rα : g 	→ [g, h�α, r(α)〉,

where h = g∧d(α), we can easily verify that rα is an inversive cone with apex r(α)

and mrα = d(α). Hence, for any object e ∈ vCG , if we define re as

re : g 	→ [g, 1h, e〉,

where h = g∧ e, then re is the unique idempotent inversive cone with apex e. Thus

(IC 5) is also satisfied. Hence, we have the following proposition.

Proposition 3.24. (CG ,PG) is an inversive category.

As in [10, Sec. 4], we can easily show that the discussed correspondence between

the categories IG and IC is also functorial. This leads to the following theorem.

Theorem 3.25. The category IG of inductive groupoids is equivalent to the cate-

gory IC of inversive categories.

Once the equivalence of the categories IG and IC has been established, the

equivalence between the categories of inverse semigroups and inductive groupoids

becomes a consequence of Theorem 3.21. Thus, we have recovered a weak version

of the Ehresmann–Schein–Nambooripad Theorem from our consideration. (Recall

that the ‘full’ Ehresmann–Schein–Nambooripad Theorem claims that the two latter

categories are isomorphic rather than equivalent).

4. Completely 0-Simple Semigroups

In this section, we take a slightly different perspective and discuss how the abstract

construction described in Sec. 2 simplifies drastically in the case of completely

0-simple semigroups. This section may also be seen as a relatively straightforward

generalization of the discussion in [7] wherein the cross-connection structure of

completely simple semigroups was studied in great detail. So whenever an exact

repetition of the argument suffices, without further comments, we refer the reader

to [7] for the details of the results outlined here. The ensuing discussion having a

relatively low entry threshold may also act as a gateway to cross-connection theory

for beginners.

It is known [32] that a completely 0-simple semigroup is isomorphic to the Rees

matrix semigroup M ◦(G; I, L;P ) described as follows. We set M ◦(G; I, L;P ) =

(I ×G× L) ∪ {0}, where G is a group, I and L are sets and P = (p�i) is an L× I

matrix with entries in G◦ := G ∪ {0} such that no row or column of P consists

entirely of zeros (then P is called a regular sandwich matrix ). The multiplication
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in M ◦(G; I, L;P ) is given by

(i, a, �)(j, b, k) :=

{
(i, ap�jb, k) if p�j �= 0,

0 if p�j = 0,

(i, a, �)0 = 0(i, a, �) = 00 := 0.

(4.1)

Now, we proceed to specialize the abstract results of Sec. 2. To that end, we

fix a Rees matrix semigroup M ◦(G; I, L;P ) and denote it by just S. So, in this

case, as the reader shall see, the categories and the various abstract objects in the

cross-connection description of a semigroup get concrete descriptions in terms of

the sets I and L, group G and the sandwich matrix P . So, we proceed to define

two concrete categories L and R, and show that they are cross-connected via the

sandwich matrix P . Finally, we use this discussion to formulate a structure theorem.

First, since the principal left ideals of a Rees matrix semigroup M ◦(G; I, L;P )
semigroup are characterized using the set L, the object set of the category L of

principal left ideals may be identified as follows:

vL := L◦ = L ∪ {0}. (4.2)

In the sequel, any arbitrary principal left ideal S(i, a, �) shall be represented by just

� whenever there is no confusion. As with general normal categories, here also the

object set shall be treated as a strict preorder subcategory as described below. Given

�1, �2 ∈ vL such that �1, �2 �= 0 and for each g ∈ G, we have a morphism from �1 to �2
denoted by ρ(�1, g, �2) such that it maps 0 to 0 and for each (i, a, �1) ∈ S(i1, a1, �1),

ρ(�1, g, �2) : (i, a, �1) 	→ (i, ag, �2) ∈ S(i2, a2, �2).

The abuse of notation must be noted here that since the morphism set is in bijection

with the set ‘eSf ’, we are in fact ‘absorbing’ the sandwich element into translat-

ing element and denoting the morphism using the single group element g. Also,

ρ(�1, 0, �2) is a morphism from �1 to �2 defined by

ρ(�1, 0, �2) : (i, a, �1) 	→ 0 ∈ S(i2, a2, �2).

Thus, L(�1, �2) := G◦ if �1, �2 �= 0. Observe that L◦ is a strict preorder and the only

nontrivial inclusions arise from the relation 0 ⊆ �. So, for each � �= 0 in the set L, we

have an inclusion ρ(0, 0, �) from 0 to �. Further, for each inclusion ρ(0, 0, �) ∈ L(0, �),

we have a unique retraction ρ(�, 0, 0) ∈ L(�, 0) and thus every inclusion in L splits

uniquely. Finally, the only morphism in L(0, 0) may be denoted by ρ(0, 0, 0). Thus,

the composition of the morphisms in L is as described in the earlier sections:

ρ(�1, g, �2)ρ(�2, h, �3) = ρ(�1, gh, �3),

where �1, �2, �3 ∈ L◦ and g, h ∈ G◦. In the sequel, whenever there is no ambiguity

regarding the domain and codomain of the morphism, we represent an arbitrary

morphism ρ(�1, g, �2) in L by just ρg. It can be easily verified that L as described

above forms a category with subobjects.
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Observe that an arbitrary morphism ρ(�1, g, �2) ∈ L either is an isomorphism

wherein �1, �2, g �= 0 or has a unique normal factorization of the form

ρ(�1, 0, �2) = ρ(�1, 0, 0)ρ(0, 0, �2).

Hence, every morphism in L has a unique normal factorization.

Now, we proceed to describe the normal cones in L. As usual, given sets A and

B, the set of all functions f : B → A is denoted AB. It is handy to represent f ∈ AB

as a |B|-tuple of elements of A of the form (aα)α∈B, where aα := f(α).

The set T := (G◦)L × L forms a semigroup under the following multiplication.

Given γ = ((gα)α∈L; �), δ = ((hα)α∈L; k) ∈ T such that (gα)α∈L, (hα)α∈L ∈ (G◦)L

and �, k ∈ L,

γ ∗ δ := ((gαh�)α∈L; k), (4.3)

where h� ∈ G◦ and gαh� is the product in G◦.
It is clear that normal cones in L can be represented as unique elements in T :

any normal cone γ with apex � �= 0 can be represented by the element ((gα)α∈L; �)
in T such that for an arbitrary k ∈ L,

γ(k) = ρ(k, gk, �) if k �= 0 and γ(0) = ρ(0, 0, �).

The set U = {0}L × L is an ideal of T . It consists of elements of T of the form

((0α)α∈L; �) which are not normal cones since none of their components are isomor-

phisms. Taking the Rees quotient R := T/U , we can verify that the semigroup L̂

of normal cones in L is isomorphic to R whereas the zero of R corresponds to the

unique normal cone γ0 in L with apex 0, namely γ0(�) = ρ(�, 0, 0).

We mention in passing that the semigroup T is nothing but the wreath product

G◦ �L of the 0-group G◦ and the right zero semigroup L. (Thus, the semigroup L̂ is

isomorphic to the Rees quotient (G◦ � L)/({0} � L)). This observation reflects, in a

nutshell, the fact that Nambooripad’s somewhat mysterious composition of normal

cones (2.5) is actually a sort of wreath product multiplication extended to a general

category setting.

In the sequel, by abuse of notation, the image of an element γ ∈ T in the quotient

semigroup R will also be denoted by just γ, whenever there is no confusion. So, for

an arbitrary element x = (i, a, �) in S, the principal cone ρx in L̂ may be denoted

by ((pαia)α∈L; �) ∈ (G◦)L ×L. This normal cone ρx with apex � is obtained by the

right translation of the ith column of P with the nonzero group element a. Since

the sandwich matrix P is regular, we have ρx ∈ R.

Hence, L is an unambiguous category which is constructed from a set L and

a group G. We shall refer to the categories constructed using such a recipe as

completely unambiguous categories.

Now, we proceed to characterize the Green relation R in the semigroup L̂; this

in turn will provide the description of the unambiguous dual L∗. Extending the

discussion in [7], we can see that given an arbitrary element γ = ((gα)α∈L; �) ∈ L̂,
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the principal right ideal γL̂ generated by γ is determined by the |L|-tuple gγ =

(gα)α∈L ∈ (G◦)L and

γL̂ = gγG
◦ × L.

Thus, the R-classes in the semigroup L̂ are in one-one correspondence with the

set {gγG◦ : gγ ∈ (G◦)L}. Observe that the element (0α)α∈LG
◦ corresponds to the

R-class generated by the zero element γ0.

Thus, the set of objects (i.e. the set of H-functors {H(γ;−) : γ ∈ L̂}) of the

normal dual L∗ may be characterized as the set {gγG◦ : gγ ∈ (G◦)L}. Further,
using the fact that the H-functors are representable, we can show that the set

of morphisms in L∗ are in a ‘dual’ correspondence with the set of morphisms in

L. So the morphisms between nonzero objects in L∗ can be characterized as the

set (G◦)op and in the sequel we denote such an arbitrary morphism by σg, where

g ∈ G◦. Similarly, we can describe the morphisms with the zero object H(γ0;−)

as σ0.

Having described the categories L and L∗, using the left-right duality, we can

easily describe the completely unambiguous category R and its dual R∗ as follows:

vR := I◦ = I ∪ {0}. (4.4)

Any arbitrary principal right ideal (i, a, �)S is represented by just i and the set

of morphisms R(i1, i2) := (G◦)op if i1, i2 �= 0 wherein an arbitrary morphism is

denoted by just λg, where g ∈ G◦. If 0 ⊆ i, we have the associated inclusion

morphism λ(0, 0, i) and the retraction λ(0, 0, i); the unique morphism in R(0, 0) is

λ(0, 0, 0).

Then it can be easily shown that the semigroup of normal cones in R is given by

the Rees quotient ((G◦)I×I)op/({0}I×I)op. Then the object set of the unambiguous

dualR∗ is characterized as {G◦gγ : gγ ∈ (G◦)I} and an arbitrary morphism between

any two nonzero objects is denoted by τg, where g ∈ G◦.
Having constructed the completely unambiguous categories L and R associated

with a completely simple semigroup S using the sets L, I and the 0-group G◦, now,
we proceed to characterize the cross-connection involved.

Observe that given the L × I matrix P with entries from G◦, we can define

functors Γ : R → L∗ and Δ : L → R∗ such that

vΓP : i 	→ piG
◦, vΓP : 0 	→ γ0G

◦, ΓP : λg 	→ σg and ΓP : λ0 	→ σ0; (4.5)

vΔP : � 	→ G◦p�, vΔP : 0 	→ G◦δ0, ΔP : ρg 	→ τg and ΔP : ρ0 	→ τ0, (4.6)

where pi is the ith column of the matrix P and p� is the �th row of P . It can

be readily seen that these functors constitute a cross-connection. In other words,

the sandwich matrix P of the semigroup M ◦(G; I, L;P ) completely determines the

cross-connection functors. The discussion in this section can be summarized in the

following theorem.
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Theorem 4.1. Every completely 0-simple semigroup S = M ◦(G; I, L;P ) deter-

mines a cross-connection (L,R; ΓP ,ΔP ) between the completely unambiguous cate-

gories L and R as described above. Conversely, given two arbitrary sets L, I and a

0-group G◦, we can define two completely unambiguous categories L and R such that

an arbitrary regular L× I matrix P with entries from G◦ will determine a unique

cross-connection (L,R; ΓP ,ΔP ); the cross-connection semigroup so obtained is the

completely 0-simple semigroup M ◦(G; I, L;P ).

The correspondence described above can be extended to a category equivalence

between the category of completely 0-simple semigroups and the category of cross-

connections of completely unambiguous categories.

5. Conclusion and Future Work

We have applied Nambooripad’s theory of cross-connections to locally inverse semi-

groups, obtaining a category equivalence between the category of cross-connected

unambiguous categories and the category of locally inverse semigroups. Being spe-

cialized to inverse semigroups, our main result leads to a new structure theorem

that, as we have shown, is equivalent to a weak version of the Ehresmann–Schein–

Nambooripad Theorem; if specialized to completely 0-simple semigroups, the result

turns out to constitute a category-theoretic formulation of the Rees Theorem. Thus,

we see that the cross-connection approach reveals a common background for the

two classical and seemingly unrelated structure theorems.

This observation suggests a promising direction for further investigations aimed

to find cross-connections explanations for several known (and possibly yet unknown)

structure results for the class of locally inverse semigroups and its important sub-

classes. In particular, we mean the covering theorems by McAlister [20] and Pastijn–

Oliveira [27] that are formulated in terms of the Rees matrix construction.

Considerable attention has been paid in the literature to the structure of the

bifree locally inverse semigroup on a set and several related constructs [1–4, 24, 25].

Our result implies that these constructs possess categorical counterparts, which, in

our opinion, are worth being studied: this might shed new light on the structure of

bifree locally inverse semigroups and their relatives and reveal categorical creatures

that might be of independent interest.

A rather unexpected application of the Ehresmann–Schein–Nambooripad The-

orem has been recently demonstrated by Malandro [19] who used it for an efficient

enumeration of finite inverse semigroups. We wonder if our main result can be

applied in a similar fashion for an enumeration of finite locally inverse semigroups.
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