
Theoretical Computer Science 922 (2022) 271–282
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Internal shortest absent word queries in constant time and

linear space ✩

Golnaz Badkobeh a, Panagiotis Charalampopoulos b,1, Dmitry Kosolobov c,∗,2,
Solon P. Pissis d,e,3

a Department of Computing, Goldsmiths University of London, UK
b Efi Arazi School of Computer Science, Reichman University, Herzliya, Israel
c Ural Federal University, Ekaterinburg, Russia
d CWI, Amsterdam, the Netherlands
e Vrije Universiteit, Amsterdam, the Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 June 2021
Received in revised form 5 April 2022
Accepted 21 April 2022
Available online 26 April 2022
Communicated by M. Sciortino

Keywords:
String algorithms
Internal queries
Shortest absent word
Bit parallelism

Given a string T of length n over an alphabet � ⊂ {1, 2, . . . , nO(1)} of size σ , we are to
preprocess T so that given a range [i, j], we can return a representation of a shortest string
over � that is absent in the fragment T [i] · · · T [j] of T . We present an O(n)-space data
structure that answers such queries in constant time and can be constructed in O(n logσ n)

time.
© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Range queries are a classic data structure topic [66,12,11]. In one dimension, a range query q = f (A, i, j) on an array of n
elements over some set U , denoted by A[1 . .n], takes two indices 1 ≤ i ≤ j ≤ n, a function f defined over arrays of elements
of U , and outputs f (A[i . . j]) = f (A[i], . . . , A[j]). Range query data structures in one dimension can thus be viewed as data
structures answering queries on a string in the internal setting, where U is the considered alphabet.

Internal queries on a string have received much attention in recent years. In the internal setting, we are asked to prepro-
cess a string T of length n over an alphabet � of size σ , so that queries about substrings of T can be answered efficiently.
Note that an arbitrary substring of T can be encoded in O(1) words of space by the indices i, j of its occurrence as a
fragment T [i] · · · T [j] = T [i . . j] of T . Data structures for answering internal queries are interesting in their own right, but

✩ The present paper is an extended and improved version of an earlier text that appeared in the 32nd Annual Symposium on Combinatorial Pattern
Matching, CPM 2021 [8].

* Corresponding author.
E-mail addresses: g.badkobeh@gold.ac.uk (G. Badkobeh), panagiotis.charalampopoulos@post.idc.ac.il (P. Charalampopoulos), dkosolobov@mail.ru

(D. Kosolobov), solon.pissis@cwi.nl (S.P. Pissis).
1 Supported by the Israel Science Foundation grants 592/17 and 810/21.
2 Supported by the Ministry of Science and Higher Education of the Russian Federation (Ural Mathematical Center project No. 075-02-2022-877).
3 Supported by the ALPACA and PANGAIA projects that have received funding from the European Union’s Horizon 2020 research and innovation

programme under the Marie Skłodowska-Curie grant agreements no. 956229 and no. 872539.
https://doi.org/10.1016/j.tcs.2022.04.029
0304-3975/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2022.04.029
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2022.04.029&domain=pdf
mailto:g.badkobeh@gold.ac.uk
mailto:panagiotis.charalampopoulos@post.idc.ac.il
mailto:dkosolobov@mail.ru
mailto:solon.pissis@cwi.nl
https://doi.org/10.1016/j.tcs.2022.04.029

G. Badkobeh, P. Charalampopoulos, D. Kosolobov et al. Theoretical Computer Science 922 (2022) 271–282
also have numerous applications in the design of algorithms and (more sophisticated) data structures. Because of these
numerous applications, we usually place particular emphasis on the construction time—other than on the tradeoff between
space and query time, which is the main focus in the classic data structure literature.

In data structures on strings it is typically assumed that the input alphabet is integer and polynomially bounded, i.e., it
is a subset of {1, 2, . . . , nO(1)} where n is the length of the input string T . One of the most widely-used internal queries
is that of asking for the longest common prefix of two suffixes T [i . .n] and T [j . .n] of T . The classic data structure for this
problem [49] consists of the suffix tree of T [28] and a lowest common ancestor data structure [40] over the suffix tree.
It occupies O(n) space, it can be constructed in O(n) time, and it answers queries in O(1) time. In the word RAM model
of computation with word size �(log n) bits the construction time is not necessarily optimal when the input alphabet
is {1, 2, . . . , σ } and the string is packed into O(n/ logσ n) machine words. A sequence of results [14,13,63,48,64,57] has
culminated in the recent optimal data structure of Kempa and Kociumaka [43]: it occupies O(n/ logσ n) space, it can be
constructed in O(n/ logσ n) time, and it answers queries in O(1) time (see also [15] and [27]).

Another fundamental problem in this setting is the internal pattern matching (IPM) problem. It consists in preprocessing
T so that we can efficiently compute the occurrences of a substring U of T in another substring V of T . For the decision
version of the IPM problem, Keller et al. [42] presented a data structure of nearly-linear size supporting sublogarithmic-
time queries. Kociumaka et al. [47] presented a data structure of linear size supporting constant-time queries when the ratio
between the lengths of V and U is bounded by a constant. The O(n)-time construction algorithm of the latter data structure
was derandomized in [45]. In fact, Kociumaka et al. [47], using their efficient IPM queries as a subroutine, managed to show
efficient solutions for other internal problems, such as for computing the periods of a substring (period queries, introduced
in [46]), and for checking whether two substrings are rotations of one another (cyclic equivalence queries). Other problems
that have been studied in the internal setting include string alignment [65,60,20,61], approximate pattern matching [23],
dictionary matching [22,21], longest common substring [4], counting palindromes [59], range longest common prefix [3,
1,50,37], the computation of the lexicographically minimal or maximal suffix, and minimal rotation [6,44], as well as of
the lexicographically kth suffix [7]. We refer the interested reader to the Ph.D dissertation of Kociumaka [45], for a nice
exposition.

In this work, we extend this line of research by investigating the following basic internal query, which, to the best of our
knowledge, has not been studied previously. Given a string T of length n over an alphabet � ⊂ {1, 2, . . . , nO(1)}, preprocess
T so that given a range [i, j], we can return a shortest string over � that does not occur in T [i . . j]. The latter shortest
string is also known as a shortest absent word in the literature. We work on the standard unit-cost word RAM model
with machine word-size w = �(log n) bits. We measure the space used by our algorithms and data structures in machine
words, unless stated otherwise. We assume that we have random access to T and so our algorithms return a constant-space
representation of a shortest string (a witness) consisting of a substring of T and a letter. A naïve solution for this problem
precomputes a table of size O(n2) that stores the answer for every possible query [i, j]. Our main result is the following
theorem.

Theorem 1. Given a string T of length n over an alphabet � ⊂ {1, 2, . . . , nO(1)} of size σ , we can construct in O(n logσ n) time a
data structure of size O(n) that, for any given query [a, b], can compute in O(1) time a shortest string over � that does not occur in
T [a . .b].

In an earlier conference version of the present paper [8], we have obtained a weaker result: a data structure of size
O((n/k) · log logσ n) that can answer queries in O(log logσ k) time, where k is a user-defined parameter from [1, log logσ n].
The improved data structure presented in this manuscript combines ideas from the conference version and the utilization
of succinct fusion trees introduced by Grossi et al. [39].

In the related range shortest unique substring problem, defined by Abedin et al. [2], the task is to construct a data structure
over T to be able to answer the following type of online queries efficiently. Given a range [i, j], return a shortest string with
exactly one occurrence (starting position) in [i, j]. Abedin et al. presented a data structure of size O(n log n) supporting
O(logw n)-time queries, where w = �(log n) is the word size. Additionally, Abedin et al. [2] presented a data structure of
size O(n) supporting O(

√
n logε n)-time queries, where ε is an arbitrarily small positive constant.

Our techniques For clarity of exposition, in this overview, we skip the time-efficient construction algorithms of our data
structures and only describe how to compute the length of a shortest absent word (without a witness) in T [a . . b]; note that
this length is at most logσ n. Let us also recall that the length of a shortest absent word of T can be computed in O(n)

time using the suffix tree of T [28]. It suffices to traverse the suffix tree of T recording the shortest string-depth �, where
an implicit or explicit node has less than σ outgoing edges.

First approach: We precompute, for each position b ∈ [1, n] and for each length j ∈ [1, logσ n], the starting position p j

of the shortest suffix of T [1 . .b] that contains an occurrence of each of the σ j distinct words of length j. In other words,
T [p j . .b] is the shortest suffix of T [1 . .b] containing all distinct words of length j from �. Then, a query for the length of a
shortest absent word of T [a . .b] reduces to computing the predecessor of a among the starting positions p1, p2, . . . , p�logσ n�
we have precomputed for position b. By maintaining these O(logσ n) starting positions in a fusion tree [35] for every
position b ∈ [1, n], we obtain a data structure of size O(n logσ n) supporting queries in O(logw log n) =O(1) time.
272

G. Badkobeh, P. Charalampopoulos, D. Kosolobov et al. Theoretical Computer Science 922 (2022) 271–282
Second approach: We precompute, for each length j ∈ [1, logσ n], all minimal fragments of T that contain an occurrence
of each of the distinct σ j words of length j. As these fragments are inclusion-free, we can encode them using two n-bit
arrays storing their starting and ending positions in T , respectively. We thus require O(n) words of space in total over all js.
Observe that T [a . .b] does not have an absent word of length j if and only if it contains a minimal fragment for length
j; we can check this condition in O(1) time after augmenting the computed bit arrays with succinct rank and select data
structures [41]. Finally, due to monotonicity (if T [a . .b] contains all strings of length j + 1 then T contains all strings of
length j), we can binary search for the answer in O(log logσ n) time.

Third approach: We optimize the first approach by utilizing succinct fusion trees to store the sets of size O(logσ n)

associated with positions of T , thus reducing the space on top of the sets to O(n logσ log n). Instead of storing the O(logσ n)-
size sets explicitly, we compute their elements on demand using O(logσ n) select data structures, each occupying O(n) bits.
This leads to an O(n logσ log n)-space solution. In order to optimize it further, we rely on the following combinatorial
observation: if the length of a shortest absent word of a string X over � is λ, we need to append �(σ d−1 · λ) letters to
X in order to obtain a string with a shortest absent word of length λ + d. (For intuition, think of |X | as a constant; then,
we essentially need to append the de Bruijn sequence of order d over � to X in order to achieve the desired result.) This
observation allows us to lower the memory consumption by truncating all succinct fusion trees at positions that are not
multiples of log log n, by building them only for their first O(log n/ log log n) entries. The total space thus reduces to O(n)

words. A query for the length of a shortest absent word of T [a . .b] is performed by first checking whether the answer
is at most log n/ log log n, which is done using the (truncated) fusion tree stored at b, and, if not, a query on T [a . .b′] is
performed, where b′ is the closest multiple of log log n after b. It can be shown using the combinatorial observation that
the answer for T [a . .b] is within an O(1)-length range of the answer for T [a . .b′], and it is computed by the data structure
from the second approach.

Other related work Let us recall that a string S that does not occur in T is called absent from T , and if all its proper
substrings appear in T it is called a minimal absent word of T . It should be clear that every shortest absent word is also
a minimal absent word. Minimal absent words (MAWs) are used in many applications [62,56,31,38,16,54,26] and their
theory is well developed [52,30,32], also from an algorithmic and data structure point of view [51,24,9,19,18,5,36,10,25]. For
example, it is well known that, given two strings X and Y , one has X = Y if and only if X and Y have the same set of
MAWs [52].

Paper organization Section 2 provides some preliminaries. The first approach is detailed in Section 3 and the second one
in Section 4. Section 5 provides the combinatorial foundations for the third approach, which is detailed in Section 6. Sec-
tions 3–5 have essentially already appeared in the conference version [8] of our paper; the main difference and novelty lie
in Section 6. We conclude with open problems in Section 7.

2. Preliminaries

An alphabet � is a finite nonempty set whose elements are called letters. A string (or word) S = S[1 . .n] is a sequence
of length |S| = n over �. The empty string ε is the string of length 0. The concatenation of two strings S and T is the string
composed of the letters of S followed by the letters of T ; it is denoted by S · T or simply by ST . The set of all strings
(including ε) over � is denoted by �∗ . The set of all strings of length k > 0 over � is denoted by �k . For 1 ≤ i ≤ j ≤ n, S[i]
denotes the ith letter of S , and the fragment S[i . . j] denotes an occurrence of the underlying substring P = S[i] · · · S[j]. We
say that P occurs at (starting) position i in S . A string P is called absent from S if it does not occur in S . A substring S[i . . j]
is a suffix of S if j = n and it is a prefix of S if i = 1.

The following proposition is straightforward (as explained in Section 1).

Proposition 1. Let T be a string of length n over an alphabet � ⊂ {1, 2, . . . , nO(1)}. A shortest absent word of T can be computed in
O(n) time.

Given an array A of n items taken from a totally ordered set, the range minimum query RMQA(�, r) = arg min A[k] (with
1 ≤ � ≤ k ≤ r ≤ n) returns the position of the minimal element in A[� . . r]. The following result is known.

Theorem 2 ([11,34]). Let A be an array of n integers. A data structure of size 2n + o(n) bits that supports RMQs on A in O(1) time
without the need to store and access A itself can be constructed in O(n) time.

We make use of rank and select data structures constructed over bit vectors. For a bit vector H we define rankq(i, H) =
|{k ∈ [1, i] : H[k] = q}| and selectq(i, H) = min{k ∈ [1, n] : rankq(k, H) = i}, for q ∈ {0, 1}. The following result is known.

Theorem 3 ([41,53]). Let H be a bit vector of n bits. A data structure of o(n) additional bits that supports rank and select queries on H
in O(1) time can be constructed in O(n) time.
273

G. Badkobeh, P. Charalampopoulos, D. Kosolobov et al. Theoretical Computer Science 922 (2022) 271–282
The static predecessor problem consists in preprocessing a set Y of integers, over an ordered universe U , so that, for any
integer x ∈ U one can efficiently return the predecessor pred(x) := max{y ∈ Y : y ≤ x} of x in Y . The successor problem is
defined analogously: upon a queried integer x ∈ U , the successor min{y ∈ Y : y ≥ x} of x in Y is to be returned. Willard and
Fredman designed the fusion tree data structure for this problem [35]. In the dynamic variant of the problem, updates to
Y are interleaved with predecessor and successor queries. Pătraşcu and Thorup [55] presented a dynamic version of fusion
trees, which, in particular, yields an efficient construction of this data structure.

Theorem 4 ([35,55]). Let Y be a set of at most n w-bit integers. A data structure of size O(n) can be constructed in O(n logw n) time
supporting insertions, deletions, and predecessor queries on Y in O(logw n) time.

We also use a succinct version of the (static) fusion tree that utilizes only O(n log w) bits on top of a read-only array Y
of length n (in contrast, the fusion tree from Theorem 4 uses O(nw) bits). In this data structure there is no need to store
the array Y explicitly. Instead, Y can be “emulated” by computing its elements on demand in O(1) time. Albeit it is not
explicitly stated in [39,17], it follows from their construction that the succinct version can be constructed from a (usual)
fusion tree in linear time.

Theorem 5 ([39,17]). Let Y be a read-only array of at most n w-bit integers and n ≤ wO(1) . A data structure of size O(n log w) bits
can be constructed in O(n logw n) time supporting predecessor queries on the elements of Y in O(logw n) time, provided that a table
computable in o(2w) time and independent of the array has been precomputed.

Note that if we build multiple predecessor queries for sets of w-bit integers using the above theorem, they can all share
a unique table computable in o(2w) time.

If |U | =O(n), then, after an O(n)-time preprocessing, we can answer predecessor queries over the integer universe U in
O(1) time as follows. For each y ∈ Y , we set the yth bit of an initially all-zeros |U |-size bit vector. We then preprocess this
bit vector as in Theorem 3. Then, a predecessor query for any integer x can be answered in O(1) time due to the following
readily verifiable formula: pred(x) = select1(rank1(x)).

The main problem considered in this paper is formally defined as follows.

INTERNAL SHORTEST ABSENT WORD (ISAW)

Input: A string T of length n over an alphabet � ⊂ {1, 2, . . . , nO(1)} of size σ > 1.
Output: Given integers a and b, with 1 ≤ a ≤ b ≤ n, output a shortest string in �∗ with no occurrence in T [a . .b].

If a = b then the answer is trivial. So, in what follows we assume that a < b. Let us also remark that the output (shortest
absent word) can be represented in O(1) space using: either a range [i, j] ⊆ [1, n] and a letter α of �, such that the shortest
string in �∗ with no occurrence in T [a . .b] is T [i . . j]α; or simply a range [i, j] ⊆ [1, n] such that the shortest string in �∗
with no occurrence in T [a . .b] is T [i . . j].

Example 1. Given the string T = abaabaaabbabbbaaab and the range [a, b] = [8, 14] (shown in red and underlined), the
only shortest absent word of T [8 . . 14] is T [i . . j] = T [7 . . 8] = aa.

3. O(n logσ n) space and O(1) query time

Let T be a string of length n. We define ST (j) as the function counting the cardinality of the set of length- j substrings
of T . This is known as the substring complexity function [29,58]. Note that ST (j) ≤ n, for all j. We have the following simple
fact.

Fact 6. The length � of a shortest absent word of a string T of length n over an alphabet of size σ is equal to the smallest j for which
ST (j) < σ j and hence � ∈ [1, �logσ n�].

We denote the set of shortest absent words of T by SAWT . Recall that, by Proposition 1, a shortest absent word of T
can be computed in O(n) time. We denote the length of the shortest absent words of T by �. By Fact 6, � ≤ �logσ n�. Since
� is an upper bound on the length of the answer for any ISAW query on T , in what follows, we consider only lengths in
[1, � − 1]. Let one such length be denoted by j. By constructing and traversing the suffix tree of T , we can assign to each
T [i . . i + j − 1] its lexicographic rank in � j . The time required for each length j is O(n), since the suffix tree of T can be
constructed within this time [28]. Thus, the total time for all lengths j ∈ [1, � − 1] is O(n logσ n) by Fact 6.

We design the following warm-up solution to the ISAW problem. For all j ∈ [1, � − 1] we store an array RNK j of n
integers such that RNK j[i] is equal to the lexicographic rank of T [i . . i + j − 1] in � j . Then, given a range [a, b], in order
to check if there is an absent word of length j in T [a . .b] we only need to compute the number of distinct elements
in RNK j[a . .b − j + 1]. It is folklore that using a persistent segment tree, we can preprocess an array A of n integers in
274

G. Badkobeh, P. Charalampopoulos, D. Kosolobov et al. Theoretical Computer Science 922 (2022) 271–282
Fig. 1. Illustration of the setting in Fact 7.

O(n log n) time so that upon a range query [a, b] we can return the number of distinct elements in A[a . .b] in O(log n)

time.4 Thus, we could use this tool as a black box for every array RNK j resulting, however, in �(logn)-time queries. We
improve upon this solution as follows.

We employ a range minimum query (RMQ) data structure [11] over a slight modification of RNK j . For each j, we have
an auxiliary procedure checking whether all strings from � j occur in T [a . .b] or not (i.e., it suffices to check whether any
lexicographic rank is absent from the corresponding range). Similar to the previous solution, we rank the elements of � j

by their lexicographic order. We append RNK j with all integers in [1, σ j]. Let this array be APP j . By Fact 6, we have that
|APP j | ≤ 2n. Then, we construct an array PRE j of size |APP j |: PRE j[i] stores the position of the rightmost occurrence of
APP j[i] in APP j[1 . . i − 1] (or 0 if such an occurrence does not exist). This can be done in O(n) time per j by sorting the
list of pairs (T [i . . i + j − 1], i), for all i, using the suffix tree of T to assign ranks for T [i . . i + j − 1] and then radix sort to
sort the list of pairs.

We now rely on the following fact.

Fact 7. ST [a . .b](j) = σ j if and only if min{PRE j[i] : i ∈ [b − j + 2, |PRE j|]} ≥ a.

Proof. If the smallest element in PRE j[b − j + 2 . . |PRE j |], say PRE j[k], is such that PRE j[k] ≥ a, then all ranks of elements
in � j occur in APP j[a . .b − j + 1]. This is because all elements (ranks) in � j occur at least once after b − j + 2 (due to
appending all integers in [1, σ j] to RNK j), and thus all must have a representative occurrence after b − j + 2. Inspect Fig. 1
for an illustration. (The opposite direction is analogous.) �

Examples 2 and 3 illustrate the construction of arrays RNK j , APP j , and PRE j as well as Fact 7.

Example 2 (Construction). Let T = abaabaaabbabbbaaab and � = {a, b}. The set SAWT of shortest absent words of T
over �, each of length � = 4, is {aaaa, abab, baba, bbbb}. Arrays RNK j , APP j , and PRE j , for all j ∈ [1, � − 1], are as
depicted in Table 1. For instance, RNK2[15] = APP2[15] = 1 denotes that the lexicographic rank of aa in �2 is 1; and
PRE2[15] = 7 denotes that the previous rightmost occurrence of aa is at position 7.

Example 3 (Fact 7). Let [a, b] = [7, 11] and j = 2 (see Example 2). The smallest element in {PRE2[11], . . . , PRE2[21]} is
PRE2[15] = 7 ≥ a = 7, which corresponds to rank APP2[15] = 1. Indeed all other ranks 2, 3, 4 have at least one occurrence
within APP2[7 . . 11] = 1, 2, 4, 3, 2.

To apply Fact 7, we construct, in O(n) time, an O(n)-space, O(1)-query-time RMQ data structure over PRE j ; see Theo-
rem 2. This results in O(n�) = O(n logσ n) preprocessing time and space over all j.

For querying, let us observe that σ j − ST [a . .b](j), for any T , a, b and increasing j, is non-decreasing. We can thus apply
binary search on j to find the smallest length j such that ST [a . .b](j) < σ j . This results in O(log �) = O(log logσ n) query
time. We obtain the following proposition (retrieving a witness shortest absent word is detailed later).

4 Here, we provide details of this folklore data structure. Consider an array B of size n, all of whose entries are initially set to a dummy value, and a
binary tree of height O(logn) with n leaves, such that, for each integer i ∈ [1, n], the i-th leaf of the tree corresponds to the i-th entry of B; each node
of the tree then naturally corresponds to the segment of B spanned by its leaf-descendants. Let us call an index i active when B[i] �= B[k] for all k ∈ (i, n].
For each node v of the tree, we will maintain the number active(v) of its active leaf-descendants as we transform B to A by updating B ’s entries in the
left-to-right order. Note that each active index contributes to the value active(v) if and only if v lies on the path from the root to the i-th leaf. Each update
of the form “B[i] := A[i]” can activate/deactivate at most one index and thus affects O(logn) nodes. Further, we can efficiently precompute when all the
(de)activations happen by sorting the entries of A. Thus, overall, O(n logn) updates of the stored values active(v) are required and they can be performed
in O(n logn) time in total. This data structure can be made persistent (i.e., it can allow access at its state after each update “B[i] := A[i]”) as follows:
the tree is implemented using pointers and, for each i, after setting B[i] to be equal to A[i], instead of making the O(logn) required updates of values
active(v), we create O(logn) new nodes, including a new root ri , and update the pointers as necessary. It remains to explain how to answer a query for
the number of distinct elements in A[i . . j]: we access the state of the data structure just after update “B[j] := A[j]”, partition [i, j] into O(logn) intervals
that correspond to a set V of nodes of the tree, and return ∑v∈V active(v).
275

G. Badkobeh, P. Charalampopoulos, D. Kosolobov et al. Theoretical Computer Science 922 (2022) 271–282
Table 1
Arrays RNK j , APP j , and PRE j in Example 2.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
T a b a a b a a a b b a b b b a a a b

RNK1 1 2 1 1 2 1 1 1 2 2 1 2 2 2 1 1 1 2
APP1 1 2 1 1 2 1 1 1 2 2 1 2 2 2 1 1 1 2 1 2
PRE1 0 0 1 3 2 4 6 7 5 9 8 10 12 13 11 15 16 14 17 18

RNK2 2 3 1 2 3 1 1 2 4 3 2 4 4 3 1 1 2
APP2 2 3 1 2 3 1 1 2 4 3 2 4 4 3 1 1 2 1 2 3 4
PRE2 0 0 0 1 2 3 6 4 0 5 8 9 12 10 7 15 11 16 17 14 13

RNK3 3 5 2 3 5 1 2 4 7 6 4 8 7 5 1 2
APP3 3 5 2 3 5 1 2 4 7 6 4 8 7 5 1 2 1 2 3 4 5 6 7 8
PRE3 0 0 0 1 2 0 3 0 0 0 8 0 9 5 6 7 15 16 4 11 14 10 13 12

Proposition 2. Given a string T of length n over an alphabet � ⊂ {1, 2, . . . , nO(1)} of size σ , we can construct a data structure of size
O(n logσ n) in O(n logσ n) time, so that if query [a, b] is given, we can compute a shortest string over � that does not occur in T [a . .b]
in O(log logσ n) time.

We further improve the query time via employing fusion trees as follows. We create a 2d array FTR[1 . . � − 1][1 . .n] of
integers, where

FTR[j][i] = min{PRE j[i − j + 2], . . . ,PRE j[|PRE j|]},
for all j ∈ [1, � − 1] and i ∈ [1, n]. Intuitively, FTR[j][i] is the rightmost index of T such that T [FTR[j][i] . . i] contains all
strings of length j over � if such an index exists and 0 otherwise.

Array FTR can be constructed in O(n�) = O(n logσ n) time by scanning each array PRE j from right to left main-
taining the minimum. Within the same complexities we also maintain satellite information specifying the index k ∈
[i − j + 2, |PRE j |] where the range minimum FTR[j][i] came from in the sub-array PRE j[i − j + 2 . . |PRE j |]. We then
construct n fusion trees, one for every collection of � − 1 integers in FTR[1 . . � − 1][i]. This takes total preprocessing time
and space O(n�) = O(n logσ n) by Theorem 4. Given the range query [a, b], we need to find the smallest j ∈ [1, � − 1] such
that FTR[j][b] < a. By Theorem 4, we find where the predecessor of a lies in FTR[1 . . � − 1][b] in O(logw �) time, where w
is the word size; this time cost is O(1) since w = �(log n).

We finally retrieve a witness shortest absent word as follows. If there is no j < � such that FTR[j][b] < a, then we
output any shortest absent word of length � of T arbitrarily. If such a j < � exists, by the definition of FTR[j][b], we output
T [FTR[j][b] . .FTR[j][b] + j − 1] if FTR[j][b] > 0 or T [k . .k + j − 1] if FTR[j][b] = 0, where k is the index of PRE j , where
the minimum came from. Inspect the following illustrative example.

Example 4 (Querying). We construct array FTR for T from Example 2. For a given [a, b] we look up column b, and find the
topmost entry whose value is less than a. If all entries have values greater than or equal to a, we output any element from
SAWT arbitrarily.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
T a b a a b a a a b b a b b b a a a b

FTR[1] 0 1 2 2 4 5 5 5 8 8 10 11 11 11 14 14 14 17
FTR[2] 0 0 0 0 0 0 0 0 0 5 7 7 7 7 7 11 11 13
FTR[3] 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4

If [a, b] = [3, 14] then no entry in column b = 14 is less than a = 3, which means the length of the shortest absent word
is 4; we output one from {aaaa, abab, baba, bbbb} arbitrarily. If [a, b] = [5, 14] then FTR[3][14] = 4 < 5 so the length of
a shortest absent word of T [5 . . 14] is 3; a shortest absent word is T [FTR[3][14] . .FTR[3][14] + 3 − 1] = T [4 . . 6] = aba.

If [a, b] = [7, 9], FTR[2][9] = 0 < 7 so the length of a shortest absent word is 2; a shortest absent word is T [k . .k + j −
1] = T [9 . . 10] = bb because FTR[2][9] = min{PRE2[9], . . . , PRE2[|PRE2|]} = PRE2[9] = 0 tells us that the minimum in this
range came from index k = 9.

We obtain the following proposition.

Proposition 3. Given a string T of length n over an alphabet � ⊂ {1, 2, . . . , nO(1)} of size σ , we can construct a data structure of size
O(n logσ n) in O(n logσ n) time, so that if query [a, b] is given, we can compute a shortest string over � that does not occur in T [a . .b]
in O(1) time.
276

G. Badkobeh, P. Charalampopoulos, D. Kosolobov et al. Theoretical Computer Science 922 (2022) 271–282
4. O(n) space and O(log logσ n) query time

Definition 1 (Order- j Fragment). Given a string T over an alphabet of size σ and an integer j, V is called an order- j fragment
of T if and only if V is a fragment of T and S V (j) = σ j . V is further called a minimal order- j fragment of T if SU (j) < σ j

and S Z (j) < σ j for U = V [1 . . |V | − 1] and Z = V [2 . . |V |].

In particular, minimal order- j fragments are pairwise not included in each other. The following fact follows directly.

Fact 8. Given a string T of length n over an alphabet of size σ and an integer j we have O(n) minimal order- j fragments. Moreover,
an arbitrary fragment F of T has S F [j] = σ j if and only if it contains at least one of these minimal fragments.

For each j ∈ [1, logσ n], we consider all minimal order- j fragments T , separately. We encode the minimal order- j frag-
ments of T using two bit vectors SP j and EP j , standing for starting positions and ending positions. Inspect the following
example.

Example 5. We consider T from Example 2 and j = 2.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
T a b a a b a a a b b a b b b a a a b

APP2 2 3 1 2 3 1 1 2 4 3 2 4 4 3 1 1 2 1 2 3 4
PRE2 0 0 0 1 2 3 6 4 0 5 8 9 12 10 7 15 11 16 17 14 13
SP2 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0
EP2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1

For instance, SP2[13] = 1 and EP2[18] = 1 denote the minimal order-2 fragment V = T [13 . . 18] = bbaaab.

We construct a rank and select data structure on SP j and EP j , for all j ∈ [1, � − 1] supporting O(1)-time queries. The
overall space is O(n) by Theorem 3 and Fact 6.

Let us now explain how this data structure enables fast computation of absent words of length j. Given a range [a, b],
by Fact 8, we only need to find whether T [a . .b] contains a minimal order- j fragment. We can do this in O(1) time using
one rank and one select query: t = rank1(a − 1, SP j) + 1 and select1(t, EP j). The select query returns the ending position of
the leftmost minimal order- j fragment that starts after the position a − 1; it remains to check whether this minimal order- j
fragment is inside [a, b].

Example 6. We consider T , SP2 and EP2 from Example 5. Let [a, b] = [5, 14]. We have t = rank1(a − 1, SP2) + 1 =
rank1(4, SP2) + 1 = 1, select1(t, SP2) = select1(1, SP2) = 5 < b = 14 and select1(t, EP2) = select1(1, EP2) = 10 < b = 14,
which means T [5, 14] contains a minimal order-2 fragment.

Let us now describe a time-efficient construction of SP j and EP j . We use arrays PRE j and APP j of T , which are
constructible in O(n) time (see Section 3). Recall that PRE j[i] stores the position of the rightmost occurrence of rank
APP j[i] in APP j[1 . . i − 1] (or 0 if such an occurrence does not exist). We apply Fact 7 as follows. We start with all bits of
SP j and EP j unset. Then, for each b ∈ [1, n] for which PRE j[b − j + 1] < min{PRE j[i] : i ∈ [b − j + 2, |PRE j|]} = a, we set
the bth bit of EP j and the ath bit of SP j . This can be done online in a right-to-left scan of PRE j in O(n) time.

Example 7. We consider T , SP2 and EP2 from Example 5. We start by setting b = n = 18 and scan PRE2 from right
to left: we have a = 13 because min{PRE2[i] : i ∈ [18, 21]} = 13. This gives fragment T [13 . . 18], which is minimal since
PRE2[b − 1] = PRE2[17] < 13. Then we set b = n − 1 = 17 and have a = 11 because min{PRE2[i] : i ∈ [17, 21]} = 11. This
gives fragment T [11 . . 17], which is not minimal since PRE2[b − 1] = PRE2[16] ≥ 11. Then we set b = n − 2 = 16 and
have a = 11 because min{PRE2[i] : i ∈ [16, 21]} = 11. This gives fragment T [11 . . 16], which is minimal since PRE2[b − 1] =
PRE2[15] < 11.

Lemma 1. SP j and EP j can be constructed in O(n) time.

For all j, the construction time is O(n�) = O(n logσ n) by Theorem 3, Lemma 1, and Fact 6. All the arrays SP j and EP j
in total occupy O(n�) = O(n logσ n) bits of space, which is O(n) space when measured in �(log n)-bit machine words. We
obtain the following lemma.

Lemma 2. Given a string T of length n over an alphabet � ⊂ {1, 2, . . . , nO(1)} of size σ , we can construct a data structure of size O(n)

in O(n logσ n) time, so that if query (j, [a, b]) is given, we can check in O(1) time whether there is any string in � j that does not
occur in T [a . .b], and if so return such a string.
277

G. Badkobeh, P. Charalampopoulos, D. Kosolobov et al. Theoretical Computer Science 922 (2022) 271–282
We can now perform binary search on j using Lemma 2 to find the smallest j for which ST [a . .b](j) < σ j . This results in
O(log �) = O(log logσ n) query time by Fact 6. It should now be clear that when we find the j corresponding to the length
of a shortest absent word, we can output the length- j suffix of the leftmost minimal order- j fragment starting after a. Note
that outputting this suffix is correct by the definition of minimal order- j fragments.

Example 8. We consider T , SP2 and EP2 from Example 5. Let [a, b] = [2, 7]. The length of a shortest absent word of T [2 . . 7]
is 2. We output bb, which is the length-2 suffix of the leftmost minimal order-2 fragment T [5 . . 10] = baaabb starting after
a = 2.

We obtain the following result.

Proposition 4. Given a string T of length n over an alphabet � ⊂ {1, 2, . . . , nO(1)} of size σ , we can construct a data structure of size
O(n) in O(n logσ n) time, so that if query [a, b] is given, we can compute a shortest string over � that does not occur in T [a . .b] in
O(log logσ n) time.

5. Combinatorial insights

A positive integer p is a period of a string S if S[i] = S[i + p] for all i ∈ [1, |S| − p]. We refer to the smallest period as
the period of the string. Let us state the periodicity lemma, one of the most elegant combinatorial results on strings.

Lemma 3 (Periodicity Lemma (weak version) [33]). If a string S has periods p and q such that p + q ≤ |S|, then gcd(p, q) is also a
period of S.

Lemma 4. If all strings in {U W : U ∈ �k} for W �= ε occur in some string S, then |S| ≥ |W | · σ k/4.

Proof. Let p be the period of W , and let a ∈ � be such that the period of aW is also p. All strings ZbW for a letter b �= a
and Z ∈ �k−1 must occur in S . Let A = {U W : U ∈ �k} \ {ZaW : Z ∈ �k−1}, and note that it is of size σ k −σ k−1 ≥ σ k/2. The
following claim immediately implies the statement of the lemma.

Claim. Let i and j be starting positions of occurrences of different strings U W , V W ∈ A in S, respectively. Then, we have | j − i| ≥
|W |/2.

Proof. Let us assume, without loss of generality, that j > i. Further, let us assume towards a contradiction that j − i < |W |/2.
Then, j − i is a period of W and p + j − i ≤ |W | since p ≤ j − i. Therefore, due to the periodicity lemma (Lemma 3), j − i
must be divisible by the period p of W . Hence, V ends with the letter a and V W /∈ A, a contradiction. �

This concludes the proof of this lemma. �
Lemma 5. If a shortest absent word of a string X is of length λ, then the length of a shortest absent word of XY is in [λ, λ +max{10, 4 +
logσ (|Y |/λ)}].

Proof. Let W and W ′ be shortest absent words of X and XY , respectively. Further, let d = |W ′| − |W |. In order to have
d > 0, all strings U W for U ∈ �d−1 must occur in XY , and hence in X[|X | − |U W | + 2 . . |X |] · Y , since none of them
occurs in X . Lemma 4 implies that |Y | + λ + d > λ · σ d−1/4. Then, since λ + d ≤ 2λd for any positive integers λ, d, we
have |Y | > λ · (σ d−1/4 − 2d). Assuming that d ≥ 10, and since σ ≥ 2, we conclude that |Y | > λ · σ d−1/8. Consequently,
logσ (8|Y |/λ) + 1 > d. Since logσ 8 ≤ 3 we get the claimed bound. �
Lemma 6. If a shortest absent word of XY is of length m, a shortest absent word of X is of length λ, and |Y | ≤ m · τ , for a positive
integer τ ≥ 16, then m − λ ≤ 10 + 2 logσ τ .

Proof. From Lemma 5 we have λ ∈ [m − max{10, 4 + logσ (|Y |/λ)}, m]. If max{10, 4 + logσ (|Y |/λ)} = 10, then m − λ ≤ 10
and we are done.

In the complementary case, since |Y | ≤ m · τ , we get the following:

λ ≥ m − logσ (m · τ/λ) − 4 ⇐⇒ λ ≥ m + logσ λ − logσ m − logσ τ − 4.

In particular, λ ≥ m − logσ m − logσ τ − 4.
From the above, if m ≤ τ , then m − λ ≤ 4 + 2 logσ τ .
In what follows we assume that m > τ ≥ 16. Rearranging the original equation, and since logσ (·) is an increasing function

and λ ≥ m − logσ m − logσ τ − 4, we have
278

G. Badkobeh, P. Charalampopoulos, D. Kosolobov et al. Theoretical Computer Science 922 (2022) 271–282
m − λ ≤ 4 + logσ (m · τ/λ) ≤ 4 + logσ

(
m

m − logσ m − logσ τ − 4

)
+ logσ τ

≤ 4 + logσ

(
m

m − 2 logσ m − 4

)
+ logσ τ .

Then, we have m − 2 logσ m − 4 ≥ m/5 since, for any σ ≥ 2, 4x/5 − 2 logσ x − 4 is an increasing function on [16, ∞) and
positive for x = 16. Hence, m − λ ≤ 4 + logσ 5 + logσ τ ≤ 7 + logσ τ .

By combining the bounds on m − λ we get the claimed bound. �
6. O(n) space and O(1) query time

Our linear-space solution of the ISAW problem with constant query time is an optimization of the O(n logσ n)-space
solution from Section 3 with some “boundary” cases processed using the data structure of Section 4. Let us first describe a
simpler O(n logσ log n)-space data structure, which will be then optimized using the combinatorial insights from Section 5.

Recall that we denote by � the length of a shortest absent word of T . The issue with the solution of Section 3 is that
the 2d array FTR[1 . . � − 1][1 . .n], equipped with fusion trees, occupies O(n logσ n) space. In order to reduce the memory
consumption, we store the array FTR implicitly, computing its entries on demand, and utilize succinct fusion trees from
Theorem 5 instead of usual fusion trees.

Recall that FTR[j][i] is the rightmost index of T such that T [FTR[j][i] . . i] contains as substrings all strings of length
j over � and it is equal to min{PRE j[i − j + 2], . . . , PRE j[|PRE j |]}. Therefore, the content of the 2d array FTR can be
“emulated” without storing it explicitly if one can compute in O(1) time the minima min{PRE j[a], . . . , PRE j[|PRE j |]}, for
any a ∈ [1, n]. For j ∈ [1, � − 1] and a ∈ [1, n], denote M j,a = min{PRE j[a], . . . , PRE j[|PRE j |]}. Let us fix some j. Since the
sequence M j,1, M j,2, . . . , M j,n is non-decreasing, we can encode it in a 2n-bit array B j using the select data structure from
Theorem 3 as follows: we construct B j (initially empty) by considering a = 1, 2, . . . , n in increasing order and, for each a,
we append to the end of B j exactly M j,a − M j,a−1 zeroes followed by 1, setting M j,0 = 0 (i.e., we append the number
M j,a − M j,a−1 written in unary); then, we have M j,a = select1(a, B j) − a.

Example 9. We consider T from Example 2 and j = 2.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
T a b a a b a a a b b a b b b a a a b

APP2 2 3 1 2 3 1 1 2 4 3 2 4 4 3 1 1 2 1 2 3 4
PRE2 0 0 0 1 2 3 6 4 0 5 8 9 12 10 7 15 11 16 17 14 13
M2,i 0 0 0 0 0 0 0 0 0 5 7 7 7 7 7 11 11 13

In this case, we have B2 = 1111111110000010011111000011001.

Besides access to the 2d array FTR, the algorithm of Section 3 also required access to the values arg min{PRE j[a], . . . ,
PRE j[|PRE j |]} in order to retrieve a witness shortest absent word. To this end, we build the 2n-bit RMQ data structure
from Theorem 2 on each array PRE j ; the data structure does not need to store the array PRE j itself to compute arg min.
The arrays B j , for j ∈ [1, � − 1], equipped with select data structures, and the RMQ data structures on arrays PRE j , for
j ∈ [1, � − 1], can be constructed in total O(n�) = O(n logσ n) time and they altogether occupy O(n logσ n) bits of space,
which is O(n) space when measured in machine words.

To answer a query [a, b], it suffices to find the smallest j such that FTR[j][b] < a. We do this by finding where the
predecessor of a lies in FTR[1 . . � − 1][b]. To this end, we constructed n fusion trees: one per FTR[1 . . � − 1][i], resulting in
a data structure of size �(n�) = O(n logσ n) with O(1) query time. But now we do not store the arrays FTR[1 . . � − 1][i]
explicitly, while still having O(1)-time “oracle” access to their entries on demand. Hence, we can construct a succinct fusion
tree of Theorem 5, for each array FTR[1 . . � − 1][i], which takes O(� log log n) bits of space since the size of machine words
is w = �(log n) bits (a shared table mentioned in Theorem 5 is also precomputed for all the trees in o(2w) = o(n) time).

Thus, all the succinct fusion trees can be constructed in O(n logσ n) time and occupy O(n logσ n log log n) bits, which is
O(n logσ log n) space when measured in �(log n)-bit machine words. The ISAW queries are answered in O(1) time by the
same algorithm as in Section 3.

Now we are to further reduce the memory usage of the data structure. We truncate all the arrays FTR[0 . . � −1][i] except
those where i is a multiple of �log log n� or i = n: namely, if i is a multiple of �log log n� or i = n, then the succinct fusion
tree for the whole array FTR[1 . . � − 1][i] is stored, occupying O(� log log n) bits, by Theorem 5; otherwise (i �= n is not
a multiple of �log log n�), we store the succinct fusion tree only for the subarray FTR[1 . . �log n/ log log n�][i], thus taking
O(log n) bits, by Theorem 5. In total, the space used is O(n

log logn � log log n + n log n) =O(n log n) in bits or O(n) in words.
In order to answer an ISAW query for T [a . .b], we first check whether the length λ of a shortest absent word in T [a . .b]

is smaller than log n/ log log n by querying the fusion tree of FTR[1 . . �log n/ log log n�][b]. If it is the case, then we have
computed the length λ and we find the absent word itself using RMQs exactly as in the O(n logσ log n)-space solution
described above.
279

G. Badkobeh, P. Charalampopoulos, D. Kosolobov et al. Theoretical Computer Science 922 (2022) 271–282
Suppose that λ ≥ log n/ log log n. We compute b′ , the successor of b among the positions i for which we have not trun-
cated FTR[1 . . � − 1][i]: b′ = min{n, �b/�log log n�� · �log logn�}. Observe that [a, b] ⊆ [a, b′]. Then, using the fusion tree of
FTR[1 . . � − 1][b′], we compute the smallest m such that FTR[m][b′] < a. Then, m is the length of a shortest absent word in
T [a . .b′]. Denote X = T [a . .b] and T [a . .b′] = XY where Y is a suffix of T [a . .b′] of length b′ − b. We obviously have λ ≤ m.
Since |Y | = b′ − b < log log n and m ≥ log n/ log log n, we have |Y | < m. It follows from Lemma 6 that the answer λ is within
a range of length 18 from m. Therefore, λ belongs to the range [m − 18, m] and we can find it in O(1) time using O(1)

queries of the O(n)-space data structure encapsulated by Lemma 2. We thus arrive at the main result of the paper.

Theorem 1. Given a string T of length n over an alphabet � ⊂ {1, 2, . . . , nO(1)} of size σ , we can construct in O(n logσ n) time a
data structure of size O(n) that, for any given query [a, b], can compute in O(1) time a shortest string over � that does not occur in
T [a . .b].

7. Open problems

It remains open whether a data structure for the ISAW problem with the same query time and space complexities as
the ones encapsulated in Theorem 1 can be constructed in linear time. Also, it is natural to pose the following related open
problem, which may require the development of fundamentally different techniques. Given a string T of length n over an
alphabet � ⊂ {1, 2, . . . , nO(1)}, preprocess T so that given a range [i, j], we can return a representation of a shortest string
over �[i, j] that is absent in the fragment T [i] · · · T [j] of T , where �[i, j] is the set of letters from � occurring in the fragment
T [i] · · · T [j].

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] P. Abedin, A. Ganguly, W. Hon, K. Matsuda, Y. Nekrich, K. Sadakane, R. Shah, S.V. Thankachan, A linear-space data structure for range-lcp queries in
poly-logarithmic time, Theor. Comput. Sci. 822 (2020) 15–22, https://doi .org /10 .1016 /j .tcs .2020 .04 .009.

[2] P. Abedin, A. Ganguly, S.P. Pissis, S.V. Thankachan, Efficient data structures for range shortest unique substring queries, Algorithms 13 (2020) 276,
https://doi .org /10 .3390 /a13110276.

[3] A. Amir, A. Apostolico, G.M. Landau, A. Levy, M. Lewenstein, E. Porat, Range LCP, J. Comput. Syst. Sci. 80 (2014) 1245–1253, https://doi .org /10 .1016 /j .
jcss .2014 .02 .010.

[4] A. Amir, P. Charalampopoulos, S.P. Pissis, J. Radoszewski, Dynamic and internal longest common substring, Algorithmica 82 (2020) 3707–3743, https://
doi .org /10 .1007 /s00453 -020 -00744 -0.

[5] L.A.K. Ayad, G. Badkobeh, G. Fici, A. Héliou, S.P. Pissis, Constructing antidictionaries of long texts in output-sensitive space, Theory Comput. Syst. 65
(2021) 777–797, https://doi .org /10 .1007 /s00224 -020 -10018 -5.

[6] M.A. Babenko, P. Gawrychowski, T. Kociumaka, I.I. Kolesnichenko, T. Starikovskaya, Computing minimal and maximal suffixes of a substring, Theor.
Comput. Sci. 638 (2016) 112–121, https://doi .org /10 .1016 /j .tcs .2015 .08 .023.

[7] M.A. Babenko, P. Gawrychowski, T. Kociumaka, T. Starikovskaya, Wavelet trees meet suffix trees, in: Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, SIAM, 2015, pp. 572–591.

[8] G. Badkobeh, P. Charalampopoulos, S.P. Pissis, Internal shortest absent word queries, in: 32nd Annual Symposium on Combinatorial Pattern Matching,
CPM 2021, 2021, pp. 24:1–24:18.

[9] C. Barton, A. Héliou, L. Mouchard, S.P. Pissis, Linear-time computation of minimal absent words using suffix array, BMC Bioinform. 15 (2014) 388,
https://doi .org /10 .1186 /s12859 -014 -0388 -9.

[10] C. Barton, A. Héliou, L. Mouchard, S.P. Pissis, Parallelising the computation of minimal absent words, in: Parallel Processing and Applied Mathematics -
11th International Conference, PPAM 2015. Revised Selected Papers, Part II, Springer, 2015, pp. 243–253.

[11] M.A. Bender, M. Farach-Colton, The LCA problem revisited, in: LATIN 2000: Theoretical Informatics, 4th Latin American Symposium, Proceedings,
Springer, 2000, pp. 88–94.

[12] O. Berkman, U. Vishkin, Recursive star-tree parallel data structure, SIAM J. Comput. 22 (1993) 221–242, https://doi .org /10 .1137 /0222017.
[13] P. Bille, I.L. Gørtz, M.B.T. Knudsen, M. Lewenstein, H.W. Vildhøj, Longest common extensions in sublinear space, in: Combinatorial Pattern Matching -

26th Annual Symposium, CPM 2015, 2015, pp. 65–76.
[14] P. Bille, I.L. Gørtz, B. Sach, H.W. Vildhøj, Time-space trade-offs for longest common extensions, J. Discret. Algorithms 25 (2014) 42–50, https://doi .org /

10 .1016 /j .jda .2013 .06 .003.
[15] O. Birenzwige, S. Golan, E. Porat, Locally consistent parsing for text indexing in small space, in: Proceedings of the 2020 ACM-SIAM Symposium on

Discrete Algorithms, SODA 2020, 2020, pp. 607–626.
[16] S. Chairungsee, M. Crochemore, Using minimal absent words to build phylogeny, Theor. Comput. Sci. 450 (2012) 109–116, https://doi .org /10 .1016 /j .tcs .

2012 .04 .031.
[17] T.M. Chan, K.G. Larsen, M. Pătraşcu, Orthogonal range searching on the ram, revisited, in: Proceedings of the 27th ACM Symposium on Computational

Geometry, SCG 2011, ACM, 2011, pp. 1–10.
[18] P. Charalampopoulos, M. Crochemore, G. Fici, R. Mercaş, S.P. Pissis, Alignment-free sequence comparison using absent words, Inf. Comput. 262 (2018)

57–68, https://doi .org /10 .1016 /j .ic .2018 .06 .002.
[19] P. Charalampopoulos, M. Crochemore, S.P. Pissis, On extended special factors of a word, in: String Processing and Information Retrieval - 25th Interna-

tional Symposium, SPIRE 2018, Springer, 2018, pp. 131–138.
[20] P. Charalampopoulos, P. Gawrychowski, S. Mozes, O. Weimann, An almost optimal edit distance oracle, in: 48th International Colloquium on Automata,

Languages, and Programming, ICALP 2021, 2021, pp. 48:1–48:20.
280

https://doi.org/10.1016/j.tcs.2020.04.009
https://doi.org/10.3390/a13110276
https://doi.org/10.1016/j.jcss.2014.02.010
https://doi.org/10.1016/j.jcss.2014.02.010
https://doi.org/10.1007/s00453-020-00744-0
https://doi.org/10.1007/s00453-020-00744-0
https://doi.org/10.1007/s00224-020-10018-5
https://doi.org/10.1016/j.tcs.2015.08.023
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibBD71E19FE1AC26FBEC8A9E4F9509D2DBs1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibBD71E19FE1AC26FBEC8A9E4F9509D2DBs1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibD6752AF83AAD593586F4B1A2EF992AB5s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibD6752AF83AAD593586F4B1A2EF992AB5s1
https://doi.org/10.1186/s12859-014-0388-9
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib29CC1F00ED1370AF7B20658DAE10E9FBs1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib29CC1F00ED1370AF7B20658DAE10E9FBs1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib2CBACCAD3FC60E0CA4159AC3DE74F5FDs1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib2CBACCAD3FC60E0CA4159AC3DE74F5FDs1
https://doi.org/10.1137/0222017
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib905512A592A3D86A40DEB5016AAC7FFCs1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib905512A592A3D86A40DEB5016AAC7FFCs1
https://doi.org/10.1016/j.jda.2013.06.003
https://doi.org/10.1016/j.jda.2013.06.003
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibC74903EB6DE5244C1CE661CE98B4627As1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibC74903EB6DE5244C1CE661CE98B4627As1
https://doi.org/10.1016/j.tcs.2012.04.031
https://doi.org/10.1016/j.tcs.2012.04.031
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib03610F6A984896C4DC5BC1143A5B8200s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib03610F6A984896C4DC5BC1143A5B8200s1
https://doi.org/10.1016/j.ic.2018.06.002
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibBDF4AE189EAE1332E21C7558CF2DD373s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibBDF4AE189EAE1332E21C7558CF2DD373s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibB19EE04A0B82C9BBB4AF8A28F9AF5D32s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibB19EE04A0B82C9BBB4AF8A28F9AF5D32s1

G. Badkobeh, P. Charalampopoulos, D. Kosolobov et al. Theoretical Computer Science 922 (2022) 271–282
[21] P. Charalampopoulos, T. Kociumaka, M. Mohamed, J. Radoszewski, W. Rytter, J. Straszyński, T. Waleń, W. Zuba, Counting distinct patterns in internal
dictionary matching, in: 31st Annual Symposium on Combinatorial Pattern Matching, CPM 2020, 2020, pp. 8:1–8:15.

[22] P. Charalampopoulos, T. Kociumaka, M. Mohamed, J. Radoszewski, W. Rytter, T. Waleń, Internal dictionary matching, Algorithmica 83 (2021) 2142–2169,
https://doi .org /10 .1007 /s00453 -021 -00821 -y.

[23] P. Charalampopoulos, T. Kociumaka, P. Wellnitz, Faster approximate pattern matching: a unified approach, in: 61st IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2020, IEEE, 2020, pp. 978–989.

[24] M. Crochemore, A. Héliou, G. Kucherov, L. Mouchard, S.P. Pissis, Y. Ramusat, Absent words in a sliding window with applications, Inf. Comput. 270
(2020), https://doi .org /10 .1016 /j .ic .2019 .104461.

[25] M. Crochemore, F. Mignosi, A. Restivo, Automata and forbidden words, Inf. Process. Lett. 67 (1998) 111–117, https://doi .org /10 .1016 /S0020 -0190(98)
00104 -5.

[26] M. Crochemore, F. Mignosi, A. Restivo, S. Salemi, Data compression using antidictionaries, Proc. IEEE 88 (2000) 1756–1768, https://doi .org /10 .1109 /5 .
892711.

[27] P. Dinklage, J. Fischer, A. Herlez, T. Kociumaka, F. Kurpicz, Practical performance of space efficient data structures for longest common extensions, in:
28th Annual European Symposium on Algorithms, ESA 2020, 2020, pp. 39:1–39:20.

[28] M. Farach, Optimal suffix tree construction with large alphabets, in: 38th Annual Symposium on Foundations of Computer Science, FOCS 1997, IEEE
Computer Society, 1997, pp. 137–143.

[29] S. Ferenczi, Complexity of sequences and dynamical systems, Discrete Math. 206 (1999) 145–154, https://doi .org /10 .1016 /S0012 -365X(98)00400 -2.
[30] G. Fici, P. Gawrychowski, Minimal absent words in rooted and unrooted trees, in: String Processing and Information Retrieval - 26th International

Symposium, SPIRE 2019, Springer, 2019, pp. 152–161.
[31] G. Fici, F. Mignosi, A. Restivo, M. Sciortino, Word assembly through minimal forbidden words, Theor. Comput. Sci. 359 (2006) 214–230, https://doi .org /

10 .1016 /j .tcs .2006 .03 .006.
[32] G. Fici, A. Restivo, L. Rizzo, Minimal forbidden factors of circular words, Theor. Comput. Sci. 792 (2019) 144–153, https://doi .org /10 .1016 /j .tcs .2018 .05 .

037.
[33] N.J. Fine, H.S. Wilf, Uniqueness theorems for periodic functions, Proc. Am. Math. Soc. 16 (1965) 109–114, http://www.jstor.org /stable /2034009.
[34] J. Fischer, V. Heun, Space-efficient preprocessing schemes for range minimum queries on static arrays, SIAM J. Comput. 40 (2011) 465–492, https://

doi .org /10 .1137 /090779759.
[35] M.L. Fredman, D.E. Willard, Surpassing the information theoretic bound with fusion trees, J. Comput. Syst. Sci. 47 (1993) 424–436, https://doi .org /10 .

1016 /0022 -0000(93)90040 -4.
[36] Y. Fujishige, Y. Tsujimaru, S. Inenaga, H. Bannai, M. Takeda, Computing DAWGs and minimal absent words in linear time for integer alphabets, in: 41st

International Symposium on Mathematical Foundations of Computer Science, MFCS 2016, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016,
pp. 38:1–38:14.

[37] A. Ganguly, M. Patil, R. Shah, S.V. Thankachan, A linear space data structure for range LCP queries, Fundam. Inform. 163 (2018) 245–251, https://
doi .org /10 .3233 /FI -2018 -1741.

[38] S.P. Garcia, A.J. Pinho, J.M.O.S. Rodrigues, C.A.C. Bastos, P.J.S.G. Ferreira, Minimal absent words in prokaryotic and eukaryotic genomes, PLoS ONE 6
(2011), https://doi .org /10 .1371 /journal .pone .0016065.

[39] R. Grossi, A. Orlandi, R. Raman, S.S. Rao, More haste, less waste: lowering the redundancy in fully indexable dictionaries, in: 26th International
Symposium on Theoretical Aspects of Computer Science, STACS 2009, 2009, pp. 517–528.

[40] D. Harel, R.E. Tarjan, Fast algorithms for finding nearest common ancestors, SIAM J. Comput. 13 (1984) 338–355, https://doi .org /10 .1137 /0213024.
[41] G. Jacobson, Space-efficient static trees and graphs, in: 30th Annual Symposium on Foundations of Computer Science, FOCS 1989, IEEE Computer

Society, 1989, pp. 549–554.
[42] O. Keller, T. Kopelowitz, S.L. Feibish, M. Lewenstein, Generalized substring compression, Theor. Comput. Sci. 525 (2014) 42–54, https://doi .org /10 .1016 /

j .tcs .2013 .10 .010.
[43] D. Kempa, T. Kociumaka, String synchronizing sets: sublinear-time BWT construction and optimal LCE data structure, in: Proceedings of the 51st Annual

ACM SIGACT Symposium on Theory of Computing, STOC 2019, ACM, 2019, pp. 756–767.
[44] T. Kociumaka, Minimal suffix and rotation of a substring in optimal time, in: 27th Annual Symposium on Combinatorial Pattern Matching, CPM 2016,

2016, pp. 28:1–28:12.
[45] T. Kociumaka, Efficient Data Structures for Internal Queries in Texts, Ph.D. thesis, University of Warsaw, 2018, https://mimuw.edu .pl /~kociumaka /files /

phd .pdf.
[46] T. Kociumaka, J. Radoszewski, W. Rytter, T. Waleń, Efficient data structures for the factor periodicity problem, in: String Processing and Information

Retrieval - 19th International Symposium, SPIRE 2012, 2012, pp. 284–294.
[47] T. Kociumaka, J. Radoszewski, W. Rytter, T. Waleń, Internal pattern matching queries in a text and applications, in: Proceedings of the Twenty-Sixth

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, SIAM, 2015, pp. 532–551.
[48] D. Kosolobov, Tight lower bounds for the longest common extension problem, Inf. Process. Lett. 125 (2017) 26–29, https://doi .org /10 .1016 /j .ipl .2017.

05 .003.
[49] G.M. Landau, U. Vishkin, Fast string matching with k differences, J. Comput. Syst. Sci. 37 (1988) 63–78, https://doi .org /10 .1016 /0022 -0000(88)90045 -1.
[50] K. Matsuda, K. Sadakane, T. Starikovskaya, M. Tateshita, Compressed orthogonal search on suffix arrays with applications to range LCP, in: 31st Annual

Symposium on Combinatorial Pattern Matching, CPM 2020, 2020, pp. 23:1–23:13.
[51] T. Mieno, Y. Kuhara, T. Akagi, Y. Fujishige, Y. Nakashima, S. Inenaga, H. Bannai, M. Takeda, Minimal unique substrings and minimal absent words in a

sliding window, in: 46th SOFSEM, Springer, 2020, pp. 148–160.
[52] F. Mignosi, A. Restivo, M. Sciortino, Words and forbidden factors, Theor. Comput. Sci. 273 (2002) 99–117, https://doi .org /10 .1016 /S0304 -3975(00)00436 -

9.
[53] G. Navarro, Compact Data Structures - a Practical Approach, Cambridge University Press, 2016.
[54] T. Ota, H. Morita, On the adaptive antidictionary code using minimal forbidden words with constant lengths, in: Proceedings of the International

Symposium on Information Theory and Its Applications, ISITA 2010, IEEE, 2010, pp. 72–77.
[55] M. Pǎtraşcu, M. Thorup, Dynamic integer sets with optimal rank, select, and predecessor search, in: 55th IEEE Annual Symposium on Foundations of

Computer Science, FOCS 2014, IEEE Computer Society, 2014, pp. 166–175.
[56] D. Pratas, J.M. Silva, Persistent minimal sequences of SARS-CoV-2, Bioinformatics (2020), https://doi .org /10 .1093 /bioinformatics /btaa686.
[57] N. Prezza, In-place sparse suffix sorting, in: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, 2018,

pp. 1496–1508.
[58] S. Raskhodnikova, D. Ron, R. Rubinfeld, A.D. Smith, Sublinear algorithms for approximating string compressibility, Algorithmica 65 (2013) 685–709,

https://doi .org /10 .1007 /s00453 -012 -9618 -6.
[59] M. Rubinchik, A.M. Shur, Counting palindromes in substrings, in: String Processing and Information Retrieval - 24th International Symposium, SPIRE

2017, Springer, 2017, pp. 290–303.
[60] Y. Sakai, A substring-substring LCS data structure, Theor. Comput. Sci. 753 (2019) 16–34, https://doi .org /10 .1016 /j .tcs .2018 .06 .034.
281

http://refhub.elsevier.com/S0304-3975(22)00252-3/bibD28A72D22ED19F7281638A11A56A2032s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibD28A72D22ED19F7281638A11A56A2032s1
https://doi.org/10.1007/s00453-021-00821-y
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib066DA6C24FA8889AAF795F4171529F8Es1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib066DA6C24FA8889AAF795F4171529F8Es1
https://doi.org/10.1016/j.ic.2019.104461
https://doi.org/10.1016/S0020-0190(98)00104-5
https://doi.org/10.1016/S0020-0190(98)00104-5
https://doi.org/10.1109/5.892711
https://doi.org/10.1109/5.892711
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibBA1B6085DE0376CE1BCD7276495104AFs1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibBA1B6085DE0376CE1BCD7276495104AFs1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibB080ADF1795B11030EDEF88B28E40F10s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibB080ADF1795B11030EDEF88B28E40F10s1
https://doi.org/10.1016/S0012-365X(98)00400-2
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibE69573B14D61F41AF803C2E707A540BBs1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibE69573B14D61F41AF803C2E707A540BBs1
https://doi.org/10.1016/j.tcs.2006.03.006
https://doi.org/10.1016/j.tcs.2006.03.006
https://doi.org/10.1016/j.tcs.2018.05.037
https://doi.org/10.1016/j.tcs.2018.05.037
http://www.jstor.org/stable/2034009
https://doi.org/10.1137/090779759
https://doi.org/10.1137/090779759
https://doi.org/10.1016/0022-0000(93)90040-4
https://doi.org/10.1016/0022-0000(93)90040-4
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibE811EC57F8A4D365EA9F5C2F199D428Bs1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibE811EC57F8A4D365EA9F5C2F199D428Bs1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibE811EC57F8A4D365EA9F5C2F199D428Bs1
https://doi.org/10.3233/FI-2018-1741
https://doi.org/10.3233/FI-2018-1741
https://doi.org/10.1371/journal.pone.0016065
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibC3E41E692C1D1473C99EBE51978B7148s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibC3E41E692C1D1473C99EBE51978B7148s1
https://doi.org/10.1137/0213024
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib91A277EAAE267DAEC8D26CC4EB2A8127s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib91A277EAAE267DAEC8D26CC4EB2A8127s1
https://doi.org/10.1016/j.tcs.2013.10.010
https://doi.org/10.1016/j.tcs.2013.10.010
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib195786AD123769B5A268736CEC188596s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib195786AD123769B5A268736CEC188596s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib28610EFB57BB7D44FB45861E3A8E2FB9s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib28610EFB57BB7D44FB45861E3A8E2FB9s1
https://mimuw.edu.pl/~kociumaka/files/phd.pdf
https://mimuw.edu.pl/~kociumaka/files/phd.pdf
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibB07A36087F262ECB0BF23631420BF413s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibB07A36087F262ECB0BF23631420BF413s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib4D3919707820E4921619F058CFFA0AE3s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib4D3919707820E4921619F058CFFA0AE3s1
https://doi.org/10.1016/j.ipl.2017.05.003
https://doi.org/10.1016/j.ipl.2017.05.003
https://doi.org/10.1016/0022-0000(88)90045-1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib9ECEE5F365119338B1C12690DB15E771s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib9ECEE5F365119338B1C12690DB15E771s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib06B780F46A5540B84E6296213990BA9As1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib06B780F46A5540B84E6296213990BA9As1
https://doi.org/10.1016/S0304-3975(00)00436-9
https://doi.org/10.1016/S0304-3975(00)00436-9
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib4360C00B5CFD52124B93E62251A2802Cs1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibC85C796BAF0B74AF970CC9700E6F9B3As1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibC85C796BAF0B74AF970CC9700E6F9B3As1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibD0D641FCC296CC677BC4F1452773C3A5s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibD0D641FCC296CC677BC4F1452773C3A5s1
https://doi.org/10.1093/bioinformatics/btaa686
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib43058ECEA8774F546A41E7E7ABE7E618s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib43058ECEA8774F546A41E7E7ABE7E618s1
https://doi.org/10.1007/s00453-012-9618-6
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib8B1492D772DF8FBA782DC3B3489553D7s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib8B1492D772DF8FBA782DC3B3489553D7s1
https://doi.org/10.1016/j.tcs.2018.06.034

G. Badkobeh, P. Charalampopoulos, D. Kosolobov et al. Theoretical Computer Science 922 (2022) 271–282
[61] Y. Sakai, A data structure for substring-substring lcs length queries, Theor. Comput. Sci. 911 (2022) 41–54.
[62] R.M. Silva, D. Pratas, L. Castro, A.J. Pinho, P.J.S.G. Ferreira, Three minimal sequences found in Ebola virus genomes and absent from human DNA,

Bioinformatics 31 (2015) 2421–2425, https://doi .org /10 .1093 /bioinformatics /btv189.
[63] Y. Tanimura, T. I, H. Bannai, S. Inenaga, S.J. Puglisi, M. Takeda, Deterministic sub-linear space LCE data structures with efficient construction, in: 27th

Annual Symposium on Combinatorial Pattern Matching, CPM 2016, 2016, pp. 1:1–1:10.
[64] Y. Tanimura, T. Nishimoto, H. Bannai, S. Inenaga, M. Takeda, Small-space LCE data structure with constant-time queries, in: 42nd International Sympo-

sium on Mathematical Foundations of Computer Science, MFCS 2017, 2017, pp. 10:1–10:15.
[65] A. Tiskin, Semi-local string comparison: algorithmic techniques and applications, Math. Comput. Sci. 1 (2008) 571–603, https://doi .org /10 .1007 /s11786 -

007 -0033 -3.
[66] A.C. Yao, Space-time tradeoff for answering range queries (extended abstract), in: Proceedings of the Fourteenth Annual ACM Symposium on Theory

of Computing, STOC 1982, ACM, 1982, pp. 128–136.
282

http://refhub.elsevier.com/S0304-3975(22)00252-3/bib7FC135444AE90CD4F50950496A9DB85Ds1
https://doi.org/10.1093/bioinformatics/btv189
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib5CDF9CC17472EFE526DCC4C7058B2423s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib5CDF9CC17472EFE526DCC4C7058B2423s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibE8F589A2F4775680CDCDF3F619C40820s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bibE8F589A2F4775680CDCDF3F619C40820s1
https://doi.org/10.1007/s11786-007-0033-3
https://doi.org/10.1007/s11786-007-0033-3
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib189BAA748199C6AE48A667359F1DF413s1
http://refhub.elsevier.com/S0304-3975(22)00252-3/bib189BAA748199C6AE48A667359F1DF413s1

	Internal shortest absent word queries in constant time and linear space
	1 Introduction
	2 Preliminaries
	3 O(nlogσn) space and O(1) query time
	4 O(n) space and O(loglogσn) query time
	5 Combinatorial insights
	6 O(n) space and O(1) query time
	7 Open problems
	Declaration of competing interest
	References

