
Citation: Titova, E.A.; Alexandrov,

D.V.; Toropova, L.V. Mathematical

Modeling of the Solid–Liquid

Interface Propagation by the

Boundary Integral Method with

Nonlinear Liquidus Equation and

Atomic Kinetics. Crystals 2022, 12,

1657. https://doi.org/10.3390/

cryst12111657

Academic Editor: Borislav Angelov

Received: 29 October 2022

Accepted: 15 November 2022

Published: 17 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

crystals

Article

Mathematical Modeling of the Solid–Liquid Interface
Propagation by the Boundary Integral Method with Nonlinear
Liquidus Equation and Atomic Kinetics
Ekaterina A. Titova 1,* , Dmitri V. Alexandrov 2 and Liubov V. Toropova 1,3

1 Laboratory of Mathematical Modeling of Physical and Chemical Processes in Multiphase Media,
Department of Theoretical and Mathematical Physics, Ural Federal University, Lenin Ave., 51,
620000 Ekaterinburg, Russia

2 Laboratory of Multi-Scale Mathematical Modeling, Department of Theoretical and Mathematical Physics,
Ural Federal University, Lenin Ave., 51, 620000 Ekaterinburg, Russia

3 Otto-Schott-Institut für Materialforschung, Friedrich-Schiller-Universität-Jena, 07743 Jena, Germany
* Correspondence: eatitova@urfu.ru

Abstract: In this paper, we derive the boundary integral equation (BIE), a single integrodifferential
equation governing the evolutionary behavior of the interface function, paying special attention to the
nonlinear liquidus equation and atomic kinetics. As a result, the BIE is found for a thermodiffusion
problem of binary melt crystallization with convection. Analyzing this equation coupled with the
selection criterion for a stationary dendritic growth in the form of a parabolic cylinder, we show
that nonlinear effects stemming from the liquidus equation and atomic kinetics play a decisive role.
Namely, the dendrite tip velocity and diameter, respectively, become greater and lower with the
increasing deviation of the liquidus equation from a linear form. In addition, the dendrite tip velocity
can substantially change with variations in the power exponent of the atomic kinetics. In general, the
theory under consideration describes the evolution of a curvilinear crystallization front, as well as the
growth of solid phase perturbations and patterns in undercooled binary melts at local equilibrium
conditions (for low and moderate Péclet numbers). In addition, our theory, combined with the
unsteady selection criterion, determines the non-stationary growth rate of dendritic crystals and the
diameter of their vertices.

Keywords: boundary integral equation; phase transitions; curved solid–liquid interface; undercooled melt

1. Introduction

The dynamics of curved phase transition fronts moving in undercooled binary mix-
tures completely characterizes the birth of material structures that appear as a result of the
phase transformation process. This dynamic behavior of such fronts under the influence
of external forces also defines the evolution of morphological perturbations, the appearance
and growth of interfacial ridges, and the formation of a two phase layer that divides the
material phases [1–6]. An important point is that the curved phase interface is usually
considered to be mesoscopically or macroscopically acute.

Let us introduce the interface function zinterface = ζ(x, t) characterizing the position
and velocity of a curvilinear phase transition front (see also Figure 1). This function satisfies
the boundary-integral equation deduced in [7,8] for purely thermal problem and then ex-
tended in [9,10] for some solid–solid and fluid–fluid systems. Here, x = (x, y) and t stand
for the vector of spatial coordinates and the time variable. Note that this method enables
obtaining the boundary-integral equation for the interface function when considering the
phase interface propagation in purely thermal or concentration problems in the absence
of convection. Considering the thermal and concentration fields synchronously (an under-
cooled binary mixture), the authors of [11–13] extended the aforementioned approach for
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slow, moderate, and fast crystallization phenomena. On the other hand, the purely thermal
theory [7,8] has been extended to the case of interface propagation in one-component and
binary undercooled melts in the presence of a forced convective flow [14,15]. In this paper,
the boundary integral theory is developed for the case of the nonlinear liquidus equation
containing the kinetic contribution, which plays an important role with the increasing
phase interface velocity. Strictly speaking, a new boundary-integral equation (BIE) for
the interface function that describes the propagation of a curvilinear front into a binary
undercooled mixture is derived. This BIE also describes the evolution of morphological
perturbations of the solid–liquid phase interface arising as a result of temperature fluctua-
tions or some external reasons [16]. What is more, the BIE under question characterizes
how solid phase ridges or patterns can evolve into an undercooled melt and form complex
material structures.

Figure 1. A sketch of the curvilinear solid–liquid interface.

2. The Model and BIE for the Interface Function
2.1. The Heat and Mass Transfer Model

The heat transfer equation for the liquid–solid (bulk) phases and the solute diffusion
equation in the liquid phase can be written as

∂Td
∂t

+ (u · ∇)Td −V
∂Td
∂z

= DT∇2Td, (1)

∂Cd
∂t

+ (u · ∇)Cd −V
∂Cd
∂z

= DC∇2Cd, (2)

where Td is the melt temperature, Cd is the solute concentration, u is the melt velocity, DT is
the thermal conductivity, DC is the diffusion coefficient, and V is a constant velocity of the
Cartesian coordinate system x, y, and z (steady-state growth rate).

The temperature, solute concentration, and fluid velocity are fixed far from the phase
transition interface, Td = Td∞, Cd = Cd∞, u = −U∞, and the boundary conditions at the
solid–liquid interface take the form of

Td = Td0 − dcKd
Q
cp

+ m1Cd + m2C2
d − βk

(
V +

∂ζ

∂t

)n
, u = 0,

DT

(
∇Td solid −∇Td liquid

)
· ds =

Q
cp

(
V +

∂ζ

∂t

)
d 2x,

−DC∇Cd · ds = (1− k0)Cd

(
V +

∂ζ

∂t

)
d 2x, (3)
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where dc = d0[1− αd cos(ιθ)] is the anisotropy capillary length, d0 is the capillary constant,
αd � 1 is the stiffness parameter, θ is the angle expressing the orientation between the
normal and growth direction, ι is the order of the crystalline symmetry, Kd is the average
curvature of the interface, Q is the latent heat of crystallization, m1 is the liquidus line
slope, m2 is the deviation of the liquidus equation from a linear form [17], cp is the heat
capacity, βk is the kinetic coefficient, n is the power exponent of the atomic kinetics, Td0
is the phase transition temperature for the flat front, ds is the surface area vector element
directed toward the liquid phase, k0 is the solute partition coefficient, and ζ is the interface
function. The average curvature of the interface Kd in the two-dimensional case can be
determined as

Kd(x, t) = − ∂2ζ(x, t)/∂x2(
1 + (∂ζ(x, t)/∂x)2

)3/2 . (4)

In this section, we derive an integrodifferential equation for the interface function
ζ(x, t) in the case of the thermo-diffusion problem with convection (1)–(4). For convenience,
let us introduce the characteristic length 2DT/V and time 4DT/V2 scales, as well as
dimensionless temperature T = Tdcp/Q, solute concentration C = m1cpCd/Q, and fluid
velocity v = u/U∞.

Thus, the dimensionless model of convective heat and mass transfer following from
(1) and (2) has the form:

∂T
∂t

+ 2
U∞

V
(v · ∇)T − 2

∂T
∂z
−∇2T = 0, (5)

∂C
∂t

+ 2
U∞

V
(v · ∇)C− 2

∂C
∂z
− DC

DT
∇2C = 0, (6)

where v is the dimensionless velocity. The boundary conditions read as

T = Ti = T0 −
dcKV
2DT

+ Ci +
Qm2

m2
1cp

C2
i − β

(
2 +

∂ζ

∂t

)n
at ζ, (7)

(
∇Tsolid −∇Tliquid

)
· ds =

(
2 +

∂ζ

∂t

)
d 2x at ζ, (8)

−DC
DT
∇Cliquid · ds = (1− k0)Ci

(
2 +

∂ζ

∂t

)
d 2x at ζ, (9)

T = T∞, C = C∞, v = 1 at infinity, (10)

where β = βkcpVn/(2nQ) and subscript i corresponds to the interface.

2.2. The Green’s Function Technique

Let us use Green’s functions GT(p|p1) and GC(p|p1) for the heat transfer and diffusion
equations without flow to solve the convective problem (5)–(10):

∂GT
∂t1

+∇2
1GT − 2

∂GT
∂z1

= −δ(p− p1),
∂GC
∂t1

+
DC
DT
∇2

1GC − 2
∂GC
∂z1

= −δ(p− p1), (11)

where p = (x, z, t) and p1 = (x1, z1, t1).
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Green’s functions for heat GT(p|p1) and chemical GC(p|p1) problems can be obtained
using the Fourier transform (see, among others, [9–11,18]) and read as

GT(p|p1) =
1

[4π(t− t1)]
3/2 exp

(
−|x− x1|2 + [z− z1 + 2(t− t1)]

2

4(t− t1)

)
, (12)

GC(p|p1) =

(
DT

4π(t− t1)DC

)3/2
exp

(
−DT

|x− x1|2 + (z− z1 + 2(t− t1))
2

4(t− t1)DC

)
. (13)

By multiplying Equations (5) and (6) at p1 by GT(p|p1) and GC(p, p1) and
Equation (11) by T(p1) and C(p1), respectively, subtracting one from the other and inte-
grating the result over p1, we obtain the temperature and solute concentration in liquid:

T(p) =
t+ε∫
−∞

∫
Λ1

dt1dx1dz1

(
2

∂(GTT)
∂z1

− 2GT
U∞

V
(v · ∇1)T −

∂(GTT)
∂t1

)

+

t+ε∫
−∞

∫
Λ1

dt1dx1dz1

(
GT∇2

1T − T∇2
1GT

)
, (14)

C(p) =
t+ε∫
−∞

∫
Λ1

dt1dx1dz1

(
2

∂(GCC)
∂z1

− 2GC
U∞

V
(v · ∇1)C −

∂(GCC)
∂t1

)

+
DC
DT

t+ε∫
−∞

∫
Λ1

dt1dx1dz1

(
GC∇2

1C− C∇2
1GC

)
, (15)

where Λ1 contains the point (x, z) and ε represents a small positive parameter.
The integrals of the time derivatives in Equations (14) and (15) turn to zero after inte-

gration over time t1. In this case, Green’s functions also tend to zero, and the temperature
and concentration are bounded at the lower limit of integration. Moreover, the Green
function is equal to zero at the upper limit because of the causality condition [18]. In ad-
dition, the integrals of the z1-derivative over z1 in Equations (14) and (15) give a constant
temperature T∞ and concentration C∞. Next, applying Green’s theorem, substituting the
heat and mass boundary conditions (8) and (9) into (14) and (15), extending the point p to
the phase transition surface, and taking ε→ 0, we arrive at

t∫
−∞

∞∫
−∞

dt1dx1

(
GT(pζ |pζ

1)

(
2 +

∂ζ

∂t

))

−2
U∞

V

t∫
−∞

∫
Λ1

dt1dx1dz1GT(v · ∇1)T = Ti − T∞, (16)

(1− k0)

t∫
−∞

∞∫
−∞

dt1dx1

(
CiGC(pζ |pζ

1)

(
2 +

∂ζ

∂t

))

−2
U∞

V

t∫
−∞

∫
Λ1

dt1dx1dz1GC(v · ∇1)C = Ci − C∞. (17)
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Here, the superscript ζ defines the phase interface. Let us write down the Gibbs–Thomson
condition for the isothermal growth with the concentration gradient in the form of

dcKV
2DT

+ β

(
2 +

∂ζ

∂t

)n
= Ci +

Qm2

m2
1cp

C2
i . (18)

The solution to this equation relative to Ci yields two real roots. One of them deter-
mining the interfacial concentration is positive and is given by

Ci = m2
1cp

√
1 + 4 Qm2

m2
1cp

[
β
(

2 + ∂ζ
∂t

)n
+ dcKV

2DT

]
− 1

2Qm2
. (19)

Thus, Equations (17) and (19) together determine the growth of an isothermal dendrite
from solution. For the combined thermal and concentration problem, let us now substitute
Ti and Ci expressed in Equations (16) and (17) into the Gibbs–Thomson Equation (7).
The result reads as

2
t∫

−∞

∞∫
−∞

dt1dx1

(
GT(pζ |pζ

1)

(
2 +

∂ζ

∂t

))
− 2

U∞

V

t∫
−∞

∫
Λ1

dt1dx1dz1GT(v · ∇1)T

= ∆− dcKV
2DT

+ Ci +
Qm2

m2
1cp

C2
i − β

(
2 +

∂ζ

∂t

)n
, (20)

where Ci is defined by Equation (17). Thus, Equation (20) represents an integrodifferential
equation for the interface function ζ(x, t) satisfying the convective problem (5)–(10) and
describing the phase interface dynamics for purely thermal and thermo-concentration
problems with convection with allowance for nonlinear liquidus equation and atomic
kinetics. Let us especially note that the second term on the left-hand side of Equation (20)
takes the flow into account.

2.3. Stationary Growth

In the case of stationary growth, the BIE transforms to

t∫
−∞

∞∫
−∞

GT(pζ |pζ
1)dt1dx1 − 2

U∞

V

t∫
−∞

∫
Λ1

dt1dx1dz1GT(v · ∇1)T

= ∆− dcKV
2DT

+ Ci +
m2

m1
C2

i − 2nβ,

Ci =

C∞ − 2 U∞
V

t∫
−∞

∫
Λ1

dt1dx1dz1GC(v · ∇1)C

1− 2(1− k0)
t∫
−∞

∞∫
−∞

dt1dx1

(
GC(pζ |pζ

1)
) . (21)

Here, ∆ = T0 − T∞ is the dimensionless undercooling and the solute concentration
in solid is constant. In the case of stationary growth, the only time-dependent function is
Green’s function, and we can integrate it over time for the thermal problem:

t∫
−∞

GT(pζ |pζ
1)dt1 =

1
2π

exp(z1 − z)K0

(√
(x− x1)2 + (z− z1)2

2

)
, (22)
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where K0 is the modified Bessel function. For the concentration problem, the integral over
time can be written as

t∫
−∞

GC(pζ |pζ
1)dt1 = exp

(
z1 − z

DC/DT

)
DT

2πDC
K0

(√
(x− x1)2 + (z− z1)2

2DC/DT

)
. (23)

Now, we obtain a general solution for the growth of any stationary form by substituting
the thermal and concentration integrals of Green’s function:

1
π

∞∫
−∞

exp(ζ − ζ1)K0

(√
(x− x1)2 + (ζ − ζ1)2

2

)
dx1

−λ
1
π

∞∫
−∞

∞∫
ζ

exp(z1 − z)K0

(√
(x− x1)2 + (z1 − z)2

2

)
v · ∇Tdx1dz1

= T0 − T∞ −
dcKV
2DT

+ Ci +
m2Q
m1cp

C2
i − 2β, (24)

where

Ci =

λ
π

DT
DC

∞∫
−∞

∞∫
ζ

exp
(

z1−z
DC/DT

)
K0

(√
(x−x1)2+(z−z1)2

2DC/DT

)
v · ∇Cdx1dz1 − C∞

1−k0
π

DT
DC

∞∫
−∞

exp
(

ζ1−ζ
DC/DT

)
K0

(√
(x−x1)2+(ζ−ζ1)2

2DC/DT

)
dx1 − 1

.

2.4. The Parabolic Cylinder Reference Frame

Let us introduce the two-dimensional parabolic coordinates [14,19]:

w =
(√

x2 + z2 + z
)

/pT , s =
(√

x2 + z2 − z
)

/pT , (25)

where pT = ρV/(2DT) is the Péclet number and ρ is the crystal tip diameter.
The integrals of Green’s function were previously calculated in [12] as

2
t∫

−∞

∞∫
−∞

dt1dx1

(
GT(pζ |pζ

1)
)
=
√

pTπ exp(pT)erfc(
√

pT)

and

2
t∫

−∞

∞∫
−∞

dt1dx1

(
GC(pζ |pζ

1)
)
=
√

pCπ exp(pC)erfc(
√

pC).

Next, we use the Jacobian J and replace the variables z1 and x1 in the convective
integral of Equation (21) with the variables w1 and s1 defined by Equation (25):

J =

∣∣∣∣∣∣∣∣
∂x
∂w

∂x
∂s

∂z
∂w

∂z
∂s

∣∣∣∣∣∣∣∣ = −
p2

T
4

( √
s√
w

+

√
w√
s

)
. (26)
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Therefore, replacing the variables in (21), we obtain

t∫
−∞

∞∫
−∞

∞∫
ζ1

dt1dx1dz1GT(pζ |p1)(v · ∇1)T

=

t∫
−∞

∞∫
−∞

∞∫
1

dt1ds1dw1 JGT(pζ |p1)(v · ∇1)T. (27)

Note that the convective integral contribution stemming from the solute concentration
has the same form. The next step in our calculations is to obtain the temperature gradient.
To do this, let us rewrite the heat conduction equation in parabolic coordinates as

d2T
dw2 =

dT
dw

(
pT

U∞

V
vw

√
w + s

w
− pT −

1
2w

)
. (28)

Integrating Equation (28) and taking the heat balance boundary condition into account,
we express the convective term as

(v · ∇)T = vw
2

pT

√
w

w + s
dT
dw

= −2vw

√
1

w(w + s)
exp

 w∫
1

(
pT

U∞

V
vw

√
w + s

w
− pT

)
dw1

. (29)

The hydrodynamic field was found in [20,21] and reads as

vw

√
w + s

w
= v2 =

erfc
(√

Re w
2

)
+ 2

πRew

(
exp

(
− Re

2

)
− exp

(
−w Re

2

))
erfc

(√
Re
2

) − 1, (30)

where Re = ρU∞/ν is the Reynolds number and ν is the kinematic viscosity.
Now, substituting (29) into (27), we obtain

t∫
−∞

∞∫
−∞

∞∫
1

dt1ds1dw1 JGT(pζ |p1)(v · ∇1)T

=
p2

T
2

t∫
−∞

∞∫
−∞

∞∫
1

dt1ds1dw1GT(pζ |p1)
v2√
ws

exp

 w∫
1

(
pT

U∞

V
v2 − pT

)
dw1

. (31)

The last step is to integrate the Green’s function derived in [15]. The result reads as

t∫
−∞

∞∫
−∞

GT(pζ |p1)dt1
ds1√

s1
=

√
pTw1π

2
exp(pTw1)erfc(

√
pTw1) (32)

for the thermal and

t∫
−∞

∞∫
−∞

GC(pζ |p1)dt1
ds1√

s1
=

√
pCw1π

2
exp(pCw1)erfc(

√
pCw1) (33)

for the concentration contributions. Finally, we obtain the convective boundary integral
equation for a dendrite having the form of a parabolic cylinder and growing with a constant
velocity in an undercooled binary melt:
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√
pTπ exp(pT)

[
erfc(

√
pT)−

p2
T

2

∞∫
1

√
w1erfc(

√
pTw1)ν2(w1) exp

pT

w1∫
1

ν2(w2)dw2

dw1

= T0 − T∞ −
dcKV
2DT

+ Ci +
m2Q
m1cp

C2
i − 2β,

Ci =

p2
T

√
πpC
2 exp(pC)

∞∫
1

√
w1erfc(

√
pCw1)ν2(w1) exp

(
pC

w1∫
1

ν2(w2)dw2

)
dw1 − C∞

2(1− k0)
√

πpC exp(pC)erfc(
√

pC)− 1
.
]

(34)

As a special note, Equation (34) contains the fluid flow in terms of ν2, which is
dependent on the Reynolds number Re(U∞) (see Equation (30)).

3. Numerical Examples

The selection criterion σ∗ = 2d0DT/(ρ2V) for the 2D thermo-solutal dendritic growth
with convection and surface tension anisotropy is defined by [21]

σ∗ =
σ0α7/4

d

1 + b
(

αα−3/4
d

)11/14

[
1(

1 + a1
√

αd pT
)2 −

1(
1 + a2

√
αd pT DT/DC

)2
2m1Ci(1− k0)DT

(Q/cp)DC

]
, (35)

α =

(
ad0U∞

4ρV
+

ad0U∞DT
2ρVDC

)(
1− 2m1Ci(1− k0)DT

DCQ/cp

)
, a(Re) =

√
Re
2π

exp(−Re/2)
erfc

(√
Re/2

) ,

where σ0 is the selection constant, b is the selection parameter responsible for fluid flow,
a1 = (8σ0/7)1/2(3/56)3/8, a2 =

√
2a1, αd = 15εc, and εc is the surface energy anisotropy.

The selection criterion (35) describes the stable growth mode of a dendritic crystal with a
constant velocity in an undercooled binary melt with a forced flow. As this takes place,
the first term in square brackets represents the thermal contribution; the second term is the
contribution from the solute concentration; the term containing coefficient b is responsible
for the incoming flow; the terms containing the Péclet numbers pT describe crystallization
with an increased velocity. In general, Formula (35) works for low and moderate Péclet
numbers in local-equilibrium conditions. When dealing with the local-nonequilibrium
scenario that occurs for high crystal growth velocities (Péclet numbers), the corresponding
high-speed selection criterion should be used [13,22].

Figure 2 shows the influence of the nonlinear liquidus slope (coefficient m2) on the
crystal velocity—melt undercooling and tip diameter melt undercooling curves. As would
be expected, the velocity V builds up, and the diameter ρ reduces with increasing the
melt undercooling. As this takes place, V and ρ, respectively, become greater and lower
with increasing the deviation m2 of the liquidus equation from a linear form. Therefore,
for example, choosing the melt undercooling ∆ = 75 K (right panel in Figure 2), we see
that the dendrite tip diameter changes within the range of 20% when the tip radius varies
between ∼4× 10−6 m (m2 = 8 K (at.%)−2) and ∼5× 10−6 m (m2 = 0). This significantly
changes the alloy microstructure (e.g., the primary interdendritic spacing [23–25]). The in-
fluence of the power exponent of the atomic kinetics n on V(∆) and ρ(∆)/2 is illustrated in
Figure 3. As is easily seen, the crystal growth velocity V can change up to 60% (compare
the red and green curves at ∆ = 200 K). This means a great impact of the atomic kinetic law
on the crystallization rate.

In general, the BIE developed in this paper describes a broader class of undercooled
crystallizing binary systems with a moving interphase boundary than previously known
theories. This is explained by taking into account the nonlinear dependence of the phase
transition temperature on the dissolved impurity concentration and the power law for the
kinetics of particle attachment to the solidification front.
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Figure 2. Dendrite tip velocity V and radius ρ/2 as functions of the melt undercooling ∆ for the
TiAl alloy. The colored lines represent the effect of quadratic liquidus m2. The parameters used in
the calculation are: solidification temperature Td0 = 1748 K, hypercooling TQ = 272 K, impurity
concentration Cd∞ = 55 at.%, distribution coefficient k0 = 0.8, liquidus slope m1 = −8.8 K (at.%)−1,
diffusion coefficient in liquid DC = 8.27× 10−9 m2 s−1, temperature diffusivity DT = 7.5× 10−6

m2 s−1, kinematic viscosity of the liquid ν = 0.5× 10−7 m2 s−1, fluid velocity U∞ = 0.1 m s−1,
latent heat of solidification Q = 12268.8 J mol−1, heat capacity cp = 45 J (mol K)−1, capillary length
dc ≈ d0 = 7.8× 10−10 m, kinetic coefficient βk = 0.2 m (s K)−1, power exponent of the atomic
kinetics n = 1, surface energy anisotropy εc = 0.01, selection constant σ0 = 0.05, selection parameter
responsible for fluid flow b = 0.1. The coefficient m2 shown in the figure inserts is measured
in K (at.%)−2.

Figure 3. Dendrite tip velocity V and radius ρ/2 as functions of the melt undercooling ∆ for the pure
Ni alloy. The colored lines represent the effect of different powers of the atomic kinetics exponent
n. The parameters used in the calculation: solidification temperature Td0 = 1728 K, hypercooling
TQ = 435 K, temperature diffusivity DT = 1 × 10−5 m2 s−1, kinematic viscosity of the liquid
ν = 7.14× 10−7 m2 s−1, fluid velocity U∞ = 0.001 m s−1, capillary length dc ≈ d0 = 4.2× 10−10 m,
kinetic coefficient βk = 0.01 m (s K)−1, surface energy anisotropy εc = 0.02, selection constant
σ0 = 0.05, selection parameter responsible for fluid flow b = 0.1.

4. Conclusions

In summary, in this study, we developed the boundary integral theory with allowance
for the nonlinear liquidus equation with a kinetic contribution playing a significant role
with the increasing phase interface velocity. The boundary integral equation, a single inte-
grodifferential equation for the interface function, was derived for the thermo-concentration
problem, which describes a solidification process of an undercooled binary melt in the
presence of convection. This equation characterizes the motion of the curved solid–liquid in-
terface (solidification front) propagating into an undercooled liquid phase in cases of small
and moderate crystallization velocities (Péclet numbers) [26]. Our calculations of the
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boundary integral based on a parabolic tip shape of the dendritic crystal showed that a
nonlinear contribution to the liquidus equation (the term proportional to the square of the
solute concentration) and the power exponent of the atomic kinetics can essentially change
the interface velocity—melt undercooling curve for moderate values of ∆T ∼ 50–250 K.
With the further increase of the undercooling, the developed theory has to be generalized
to the case of the hyperbolic impurity diffusion equation [27,28].

As a special note, the boundary integral equation under consideration has great poten-
tial applications for the further development of crystallization theory. For example, it can be
used for simulating the pattern formation and crystal growth in undercooled liquids [12,29],
studying the development of morphological instability [2,9,10,30], and deriving a selection
criterion for a stable mode of dendritic growth [1,21,30]. An important task of crystalliza-
tion theory is to derive the boundary integral while taking into account the nucleation and
growth of particles in an undercooled liquid ahead of the phase transformation boundary.
This problem can be solved by combining the present analysis and the theory of crystal
growth at the intermediate stage of phase transformation [31–38]. Another important task
is to determine the boundary integral equation for the directional crystallization process
with a two-phase region. Such a problem can be attempted by combining the theory
under consideration and the crystallization theory with a quasi-equilibrium two phase
region [39–44]. The method of the boundary integral equation developed in this paper can
also be applied to describe moving boundaries in biologically active media [45,46], as well
as in complex heterogeneous systems of different physical natures [47,48].
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