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Abstract: The size-dependent properties of magnetic nanoparticles (MNP) are the major character-
istics, determining MNP application in modern technologies and bio-medical techniques. Direct
measurements of the nanosized particles, involved in intensive Brownian motion, are very compli-
cated; so the correct mathematical methods for the experimental data processing enable to successfully
predict the properties of MNP suspensions. In the present paper, we describe the fast numerical
algorithm allowing to get the distribution over the relaxation time of MNP magnetic moments in
ferrofluids. The algorithm is based on numerical fitting of the experimentally measured frequency
spectra of the initial dynamic magnetic susceptibility. The efficiency of the algorithm in the solution
of the inverse problem of magnetic granulometry is substantiated by the computer experiments for
mono- and bi-fractional ferrofluids.

Keywords: mathematical model; ferrofluid; dynamic susceptibility; numerical algorithm; relaxation time

1. Introduction

Magnetic fluids (or ferrofluids) are stable colloidal suspensions of magnetic nanoparti-
cles (MNP) in a nonmagnetic carrier liquid. The ability to tune the various physical properties
of magnetic fluids with applied magnetic fields has led to manifold applications [1] in modern
technologies. One important property is the dynamic response of the ferrofluid magnetiza-
tion to an AC magnetic field. If the field is weak, then the linear response is defined by the
initial dynamic magnetic susceptibility, χ, which consists of real (in-phase, χ′) and imaginary
(out-of-phase, χ′′) parts. Power dissipation is proportional to χ′′, and so magnetic suspension
can be efficiently used in the magnetic hyperthermia method of cancer therapy [2–5] and the
magnetic particle imaging [6–9].

Magnetic fluids represent a classic paramagnetic system [1]; in the absence of an exter-
nal magnetic field the total magnetic moment of all MNPs is zero due to their intensive
Brownian motion. Applied static magnetic field acts on each MNP magnetic moment turn-
ing to rotate it along the field direction, so the fluid static magnetization is always directed
along the field. At weak fields,s the magnetization is linear in a field strength, and the
initial slope of the magnetization curve defined the initial static magnetic susceptibility of
a magnetic fluid. This parameter is of major importance since it determines the magnetic
response of a fluid to an applied magnetic field. Evidently, the susceptibility is propor-
tional to the concentration of MNPs and is inverse to temperature and it also defined by a
square value of MNP magnetic moment [1]. Since all MNPs are of different sizes, actually
the susceptibility is determined by a mean square magnetic moment, which is averaged
over the MNP size distribution. In a very strong external field the fluid magnetization
approaches the saturation value when all MNP magnetic moments are co-aligned to the
field. The saturation magnetization is also proportional to MNP concentration, and it
appears to be linear in the mean value of MNP magnetic moment.
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Traditionally the researchers try to characterize the nanoparticles with their sizes [10–12].
However, here one needs to assume some shape for a nanoparticle and to make some
approximations concerning the nanoparticle internal structure. For example, the MNPs
are traditionally modeled by the uniformly magnetized spheres, ignoring the MNP non-
sphericity and the surface roughness. Ideally, the distribution od MNPs over their sizes can
be measured directly with the help of modern experimental techniques, such as Atomic
Force Microscopy, or Transmission Electron Microscopy, or Dynamic Light Scattering, etc.
However, the problem here is that the MNP is characterized by several sizes. The diameter
of metallic nanoparticle is larger than the diameter of magnetized core due to the presence
of non-magnetic surface layer of atoms with frustrated spins [1]. In addition, the magnetic
suspension is colloidal sterically or electrostatically stabilized. It means the each MNP is
covered by a sterical layer of surfactant molecules or by the adsorbed ions forming the
double electric layer. These layers increased the hydrodynamic MNP diameter as compared
with the size of metallic size nanoparticle. So, the direct measurements do not solve the
problem of the MNP size distribution. On the other hand, the prediction of the properties
of MNP ensemble often does not demand the correct information about the MNP sizes,
but it requires the knowledge of some physical characteristics. Talking about the static
magnetic properties of ferrofluids we may state that the correct description and prediction
can be obtained knowing the distribution of MNP over their magnetic moments only.

For many applications the dynamic magnetic response of the MNPs is more important
than the static magnetic properties. In this case, the spectrum of relaxation times of
MNP magnetic moments is of principal interest [13]. However, the problem is that the
MNP magnetic moment relaxation time cannot be measured directly but only with the
help of indirect experimental methods. Moreover, the spectrum of relaxation times of
the ensemble of the MNPs with different sizes differs from that for single MNPs due
to collective effects [14]. Anyway, the dynamic magnetic granulometry comprises the
numerical solution of the inverse problem, when the numeric dataset of experimental
points is described with some analytical expression under the condition of minimization of
the standard deviation. The main problem here is concerned with the fact that the ferrofluid
susceptibility spectrum is produced by all MNPs, distributed continuously over their sizes,
magnetic moments and relaxations times. Since the typical value of MNPs in real ferrofluids
has the order∼1016 per cubic centimeter, we may consider this MNP size distribution as the
’continuous’ one from the mathematical point of view. On the other hand, the numerical
fitting can be implemented only with a limited number of MNP fractions. Evidently,
the correct numerical fitting demands for a rather large number of these fractions. It means
that the number of ’degrees of freedom’ in a numerical solution of the inverse problem is
very large; and the computation time should be very long. In addition, the large number
of ’degrees of freedom’ does not ensure the high accuracy of the extracted characteristics,
since the used experimental data cannot be considered as the ’exact’ data; the measurement
data are only known to within the experimental errors. In this paper we are focusing on
the numerical method of extraction of the relaxation time spectrum from the experimental
measurements of the initial dynamic magnetic susceptibility of ferrofluids. The basic
theoretical model and the numerical algorithm are described in Section 2. The results of
the algorithm application are presented in Section 3 for extraction of the relaxation time
spectrum of the model mono-fraction and bi-fraction ferrofluids, the relaxation times of
which are known in advance. In addition, we end with our Discussion.
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2. Theory
2.1. Theoretical Model

The dynamic magnetic response of a system of non-interacting MNPs at temperature
T to a weak linear polarized probing magnetic field is given by the Debye expressions [15]
for the initial dynamic magnetic susceptibility, χD( f ) = χ′D( f )− iχ′′D( f ):

χ′D( f ) = χL

N

∑
k=1

Ak

1 + (2π f τk)
2 , (1)

χ′′D( f ) = χL

N

∑
k=1

Ak2π f τk

1 + (2π f τk)
2 . (2)

Here, f stands for the frequency on an external AC field; χ′D and χ′′D are the real and the
imaginary parts of the Debye dynamic susceptibility, respectively. We consider also that
all MNPs are divided into N fractions; each MNP of the k-th fraction is characterized by
the same magnetic moment µk and the same relaxation time τk of this magnetic moment.
The total numerical concentration of MNPs is ρ, and the molar portion of the k-th fraction
is νk. So, the zero-frequency limit ( f → 0) gives the static Langevin susceptibility χL:

χL =
µ0ρ

3kBT

N

∑
k=1

µ2
kνk ,

N

∑
k=1

νk = 1 , (3)

where µ0 is the vacuum permeability; kB is the Boltzmann’s constant. With these notations
the expressions (1) and (2) look like the expansions over the contributions of all N fractions,
and the fraction coefficient Ak has the meaning of the amplitude of this contribution:

Ak = µ2
kνk/

N

∑
k=1

µ2
kνk ,

N

∑
k=1

Ak = 1 . (4)

It is worth noting here that the MNP distribution over their magnetic moments is
unknown in a real experiment, as well as the relaxation time spectrum. So, our goal is to
develop the fast and stable numerical algorithm of determination of Ak and τk from the
AC susceptibility measurements of ferrofluids.

In what follows, for clarity we will describe the algorithm on the basis of Debye model
(1) and (2). Applying to real ferrofluids, the Debye expressions may be used for very
diluted samples only; this can be measured in terms of Langevin susceptibility, χL � 1.
For larger values of χL, at least comparable with unity, the advanced model should be
applied accounting for the interparticle magnetic interaction. For example, the so-called
“modified Weiss” (MW) theory [16] might be recommended, the dynamic susceptibility
χMW( f ) in the framework of which is expressed through the Debye susceptibility

χMW( f ) =

(
1 + 1

3 χL

)
χD( f )

1 + 1
3 χL − 1

3 χD( f )
. (5)

The real, χ′MW, and imaginary, χ′′MW, parts of this function are

χ′MW( f )(
1 + 1

3 χL

) =

(
1 + 1

3 χL

)
χ′D( f )− 1

3

{
[χ′D( f )]2 + [χ′′D( f )]2

}
[
1 + 1

3 χL − 1
3 χ′D( f )

]2
+ 1

9
[
χ′′D( f )

]2 , (6)

χ′′WM( f )(
1 + 1

3 χL

) =

(
1 + 1

3 χL

)
χ′′D( f )[

1 + 1
3 χL − 1

3 χ′D( f )
]2

+ 1
9
[
χ′′D( f )

]2 . (7)
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The MW theory describes very accurately the Brownian dynamic simulation data [16] for
the dynamic susceptibility of polydisperse dipolar fluids up to the values of χL ∼ 3. The
main physical effect, predicted by the MW theory, is that the system of interacting MNPs
exhibits the spectrum of collective relaxation times, differing from the single MNP spectrum
τk due to the collective effect of interparticle magnetic interaction. As a result, the maximum
of the imaginary susceptibility shifts towards lower frequencies with the growth of MNP
concentration. This effect was discovered theoretically [14], and then proved by the
computer simulations [16,17] and the experimental observations [18,19]. Note that the MW
dynamic susceptibility (5) is expressed in terms of the Debye susceptibilities (1) and (2),
and thus it is the function of the fraction relaxation times τk and the fraction amplitudes
Ak. This point is very important because the use of the extended MW model (instead of
the simple Debye one) does not introduce any additional unknown parameters that need
to be determined.

2.2. Numerical Algorithm

The main idea is to extract the information about the relaxation time spectrum of
MNP ensemble from the experimental data on the dynamic initial magnetic susceptibility
of ferrofluid on the basis of numerical processing of these data with the help of theoretical
MW expressions (6) and (7). However, the determination of the coefficients in the relations
(6) and (7) from the experimental data is an inverse problem. It relates to an ill-posed
problem in the mathematical sense, because the task may not have a unique solution
owning to nonlinearity. Moreover, the result of the fitting is dependent on the number of
MNP fractions N; and the number of unknown variables is 2N (the relaxation times τk
and the amplitudes Ak). However, the computing time grows rapidly with the number of
fractions; and the non-linear character of expressions (6) and (7) often makes impossible
the numerical solution of the fitting problem with a large number of fractions because it
requires a lot of computational resources (computation time). The additional difficulty
is connected with the fact of existing measurement errors: the set of experimental points
cannot be considered as the exact data. So, some measurement error in one experimental
point may lead to an uncontrolled shift in fitting parameters.

To achieve the appropriate computation time and to minimize the influence of experi-
mental errors we suggest the following numerical algorithm.

• We use the obtained numeric dataset of experimental points for the real, χ′j, and the
imaginary, χ′′j , susceptibilities. We count these data with sign j ∈ [1, M], where M
stands for the total number of experimentally measured susceptibilities at the frequen-
cies f j. The static Langevin susceptibility χL is determined as the zero-frequency limit

of χ′j on the basis of static MW susceptibility (6), χ′MW(0) = χL

(
1 + 1

3 χL

)
.

• To reduce the number of unknown parameters for the optimization and to minimize
the computation time, we fix the set of the fraction relaxation times τk being distributed
evenly at the logarithmic scale, for example, τk = 10−k s, k =∈ [1, N]. Importantly,
the number of fractions does not exceed ten, N ≤ 10. The amplitudes Ak are to be
determined numerically from the condition

M

∑
j=1

R


[
χ′MW( f j)− χ′j

]2

||χ′||

+ R


[
χ′′MW( f j)− χ′′j

]2

||χ′′||


→ min , (8)

where ||χ|| = max |χj|. Function R(z) can be any monotonously increasing sub-linear
function of its variable z, given in criterion (8) in round brackets; we use here the
function R(z) ≡ ln(1 + z). Such a choice prevents a situation when the least-squares
solution can become significantly biased to avoid very high residuals on outliers [20].
We insert the denominators in the functional (8) in order to equalize the contributions
from the real and the imaginary parts of the dynamic susceptibility. The number of
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fitting parameters Ak is equal to N, and it is not too much; the numerical optimization
is very fast, and the optimization results are not affected by the experimental fluctua-
tions.
The optimization condition (8) includes summation over index j from 1 to M, so the
total number of experimental data is used during the fitting for both susceptibilities,χ′j
and χ′′j . So, the algorithm requires the best coincidence between theory and experiment
simultaneously for both susceptibilities.

• With this first numerical fitting we get the N points at the plane (τ; A), which describes
roughly the relaxation time spectrum for MNP fractions. Of course, there are not
many of these points, and they are well separated from each other. An example is
given in Table 1. Then, we shift the set τk with some δ, which fits an integer number
of times in an interval: lg τk − lg τk+1 = mδ, m ∈ N. For the previous example
τk = 10−k s, k =∈ [1, N], δ might be 0.1 and m = 10. So, the next set of fractions
are characterized with the relaxation times, each of them is shifted with +δ in the
logarithmic sale in comparison with the previous set of fraction relaxation times,
but the number of fraction N remains the same. To explain this point in more details
we show Table 1 as an example when the number of fractions is chosen as 6. The first
set of fractions is given in the first line “Fit 1”. The second set of fractions is presented
in line “Fit 2”, and the relaxation times here are shifted with +0.2 in the logarithmic
scale. Then, we shift the fractions again and again, m− 1 times, and for each case
we apply the numerical optimization of criterion (8) for each new set of fractions
independently of previous fittings, and we determine the amplitudes. After that we
combine all fitted parameters together and normalize the amplitudes according to
normalization condition (4), and so we get the mN number of points at the plane
(τ; A).

• For real ferrofluids the MNP relaxation times range from 10−9 s (the Néel superpara-
magnetic relaxation) to 10−1 s (the Brownian relaxation), depending on the MNP
size. Testing of the described algorithm in this time range reveals that the stable
and low-noisy fitting results can be obtained even for rather small number of fitting
fractions: 6 ≤ N ≤ 10. The PC computation time takes no more than several seconds,
and it increases with N according to parabolic law: ∝ N2.

• The advantages of this algorithm are: (i) it converges rapidly for each numerical
realization for N fractions; (ii) we get the numerical fitting with m-times larger number
of fractions than N; (iii) we get the ’smooth’ fitting because a small number of fractions
N at each realization means that we average over the MNP contributions inside some
interval of the relaxation times, so we avoid the influence of experimental errors.
The resulting array of points Ai(τi), i ∈ [1; mN] should be considered as the desired
spectrum of the MNP relaxation times.

Table 1. Example of the set of fraction relaxation times. The number of fractions N is 6. The fitting
time interval is from 10−7 s to 10−1 s. The time shift δ is 0.2. The number of fits is 5. So we get
30 points in the plane (τ; A) to characterize the time relaxation spectrum.

Fit lg τ6 lg τ5 lg τ4 lg τ3 lg τ2 lg τ1

1 −7 −6 −5 −4 −3 −2
2 −6.8 −5.8 −4.8 −3.8 −2.8 −1.8
3 −6.6 −5.6 −4.6 −3.6 −2.6 −1.6
4 −6.4 −5.4 −4.4 −3.4 −2.4 −1.4
5 −6.2 −5.2 −4.2 −3.2 −2.2 −1.2

2.3. Program Implementation

To perform the actual fit, the target function (8) is minimized using the differential
evolution algorithm, which was first introduced in Ref. [21]. Differential evolution method
belongs to a class of stochastic methods: it does not compute a gradient of function,
and this method is quite similar to the Monte–Carlo technique, widely used in computer
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simulations. Differential evolution actually is not a single method, but it is a wide group of
similar algorithms that differ in details. Here, we use the implementation code available in
the scientific Python library [22]. Visualisation of the results was obtained also with the
help of Python library [23].

It is well-known [24] that the convergence of the differential evolution algorithm
strongly depends on its parameters. In our case, the default parameters of the library [22]
appeared to be suitable. More precisely, the differential evolution strategy was “best/1/bin”
according to almost standard nomenclature used in the literature [25]. The maximum
number of generations (over which the entire population is evolved) was chosen to 20,000.
The population had 15 ∗ N individuals. The mutation constant was taken from [0.5, 1)
because dithering was employed. In the literature mutation constant is also known as differ-
ential weight, being denoted by F. The recombination constant, which is also known as the
crossover probability, was equal to 0.7. Type of population initialization corresponded to
the Latin Hypercube sampling which tries to maximize coverage of the available parameter
space. The best solution vector was continuously updated within a single generation [26].
The domain of unknowns amplitudes Ak was limited by a segment [0; 1].

Obviously, our target function (8) satisfies the Lipschitz condition. This means that
more complicated numerical algorithms might be used guaranteeing the global conver-
gence. Construction of the algorithm, described here in Section 2.2, allows us to use almost
any modern optimization method due to the fact that our method requires for the fitting
with the quite small number N of MNP fractions.

3. Results

To test the suggested numerical algorithm and to show its efficiency we performed
two computer experiments for the most difficult cases when the particle size distribution of
the studied ferrofluid is very narrow and close to the delta-function. In the first experiment
(A) the mono-fraction ferrofluid is studied, and the MNP relaxation time is considered as
10−5 s. The second experiment (B) is performed for bi-fraction ferrofluid, the relaxation
times of fractions are 10−5 s and 10−4 s, the amplitudes of both fractions are equal to 0.5.
The Langevin susceptibility is χL = 1 for both ferrofluids A and B, and we neglect the
interparticle interaction for simplicity.

The frequency spectra of the initial dynamic susceptibility were calculated with the
help of expressions (1) and (2). We consider the obtained dataset of dynamic suscepti-
bilities as the experimental data, and we indicate these data as the experimental dots in
Figures 1 and 2. These spectra were fitted according to the described numerical algorithm
with varying number of fractions from 6 to 9.

Dependencies of both parts of the ferrofluid A dynamic susceptibility on the frequency
f of AC probing field are shown in Figure 1. The spectrum is a pure Debye-like one, and the
imaginary part demonstrates the maximum at the frequency 105/2π ≈ 1.6 × 104 Hz.
The same frequency spectrum for the ferrofluid B is shown in Figure 2. Here, we see two
imaginary susceptibility maximums produced by two fractions. Since the amplitudes of
both fractions are equal and the interparticle effects are not taken into account, the heights
of both maximums are also coincident. The results of fitting are presented with curves,
and the numerical errors are invisible.
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Figure 1. Dynamic susceptibility frequency spectrum for the mono-fraction ferrofluid A. The com-
puter experiment dots for both real and imaginary susceptibilities are shown with circles. The curves
demonstrate the result of fitting with the help of the presented algorithm with 9 fractions, and the
time shift is δ = 0.1.

102 103 104 105 106

Frequency [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

Su
sce

pti
bil

ity

′, exp.
′′, exp.
′, fit
′′, fit

Figure 2. Dynamic susceptibility frequency spectrum for the bi-fraction ferrofluid B. The computer
experiment dots for both real and imaginary susceptibilities are shown with circles. The curves
demonstrate the result of fitting with the help of the presented algorithm with 9 fractions, and the
time shift is δ = 0.1.

Theoretical curves in Figures 1 and 2 were calculated on the basis of the presented
algorithm (Section 2.2), and the amplitudes of the fractions were determined within the
optimization of criterion (8). The results for the spectra are presented in Figures 3 and 4 in
the plane “fraction relaxation time—fraction amplitudes”. We would only like to mention
here that for both ferrofluids, A and B, the agreement between ’experimental’ dots and the
theoretical curves is perfect.
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Figure 3. The relaxation time spectrum, obtained for the ferrofluid A, is shown in the plane ’relaxation
time—fraction amplitude’, (τ; A). The fraction relaxation time, used in the computer experiment, is
10−5 s. (a) Fitting with 5 fractions and the time shift δ = 0.1. (b) Fitting with 9 fractions and the time
shift δ = 0.2.

The obtained spectrum of the relaxation times for ferrofluid A is presented in Figure 3,
and since we are trying to reconstruct the delta-function distribution, we show here the
results of fitting algorithm with different number of fitting fractions. We see the peak both
in Figure 3a,b, the maximum of which coincides with the relaxation time 10−5 s, which
was put into the model mono-fraction ferrofluid A. Simultaneously, the following tendency
holds true: the more fractions are used, the narrower is the maximum. Since the set of
amplitudes is normalized to unity, the height of the amplitude peak is higher in the case
when the larger number of fractions is used in the algorithm.

The obtained spectrum of the relaxation times, obtained for the bi-fraction ferrofluid B,
is shown in Figure 4 for the fitting procedure with nine fractions. Evidently, both fractions
are checked correctly and the fraction relaxation times 10−5 s and 10−4 s are clearly seen.
It is worth mentioning that the presented algorithm does not only detect correctly the
relaxation times of fractions, but it gives the correct mutual correspondence between the
fractions in dynamic susceptibility. We mean here that the fraction amplitudes, found for
the bi-fraction ferrofluid B, appear to be coincident, and the peaks in Figure 4 look the same
but shifted in one decimal order.
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Figure 4. The relaxation time spectrum, obtained for the ferrofluid B, is shown in the plane ’relaxation
time—fraction amplitude’, (τ; A). The fraction relaxation times, used in the computer experiment,
are 10−5 s and 10−4 s. Fitting algorithm was used for 9 fractions and the time shift δ = 0.1.

4. Discussion

The relaxation time distribution spectra, obtained in this way, provide the basis for
predicting the time response of MNP suspension under the influence of the AC magnetic
field. The next step is the characterization of MNPs with their sizes. The transition from
time distribution to size distribution requires the one-to-one correspondence between the
MNP size and the MNP relaxation time. Traditionally, two physical mechanisms are dis-
cussed allowing for rotation of the MNP magnetic moment. The first one is the Brownian
thermal motion, when the MNP rotates as a rigid sphere with frozen magnetic moments.
The characteristic Brownian relaxation time is proportional to the hydrodynamic volume
of the MNP and is linearly dependent on a liquid viscosity [1]. Typically, the range of
time of Brownian relaxation mechanism is more than 10−5 s. The second mechanism is
connected with the stochastic reorientations of the magnetic moment inside MNP due to
thermal fluctuations. This behaviour is known as Néel ’superparamagnetism’, and it is
characteristic of nanosized particles only. Superparamagnetic fluctuations are commonly
described as the thermally activated rotations of the magnetic moment inside the MNP
magnetic core. The characteristic Néel relaxation time depends on the magnetic anisotropy
energy [1], which is proportional to the MNP magnetic core volume. Since the magnetic
anisotropy of the MNP magnetic material prevents the magnetic moment reorientation,
the mentioned dependence is sharply increasing function, but the exact analytical ex-
pression is unknown. It is commonly accepted that ferroparticle relaxation with times
less than 10−5 s corresponds to the Néel mechanism. In both cases the relaxation time
depends on the additional parameters, like the liquid viscosity and/or the MNP magnetic
anisotropy constant, the presence of which make it difficult to construct an unambiguous
correspondence between MNP relaxation time and MNP size.

It is worth mentioning that the total range of the relaxation times, fixed in the dynamic
susceptibility measurements, is very wide, eight-nine orders of magnitudes, typically
from 10−9 s up to 10−1 s. Evidently, the numerical granulometric algorithm with a finite
number of fractions cannot cover this range with sufficient density, for example, at random
distribution of the fraction relaxation times. Within our algorithm, we put manually the
relaxation times equally dense at the logarithmic time scale. After several shifts, described
in Section 2.2, we get the relaxation time spectra with rather large number of points
distributed uniformly close to each other, see Figures 3 and 4. In terms of computational
time the last point means the main novelty of the algorithm; it is fast; it does not require
for huge computational resources, but results in a very broad and rather dense relaxation
time spectrum.
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In conclusion, our mathematical model results in the simple and fast numerical
algorithm for the MNP dynamic magnetic susceptibility, which can be effectively used for
processing experimental data and estimating the magnetic characteristics and the relaxation
time spectra of MNPs and their suspensions. The possibility of the prediction of these
characteristics is of major importance for applications of these objects in biomedicine and
modern technologies.
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